Step |
Hyp |
Ref |
Expression |
1 |
|
chp0mat.c |
|
2 |
|
chp0mat.p |
|
3 |
|
chp0mat.a |
|
4 |
|
chp0mat.x |
|
5 |
|
chp0mat.g |
|
6 |
|
chp0mat.m |
|
7 |
|
chpscmat.d |
|
8 |
|
chpscmat.s |
|
9 |
|
chpscmat.m |
|
10 |
|
chpscmatgsum.f |
|
11 |
|
chpscmatgsum.h |
|
12 |
|
chpscmatgsum.e |
|
13 |
|
chpscmatgsum.i |
|
14 |
|
chpscmatgsum.s |
|
15 |
|
chpscmatgsum.z |
|
16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
chpscmatgsumbin |
|
17 |
|
crngring |
|
18 |
17
|
adantl |
|
19 |
2
|
ply1lmod |
|
20 |
18 19
|
syl |
|
21 |
20
|
ad2antrr |
|
22 |
|
eqid |
|
23 |
11 22
|
mgpbas |
|
24 |
11
|
ringmgp |
|
25 |
18 24
|
syl |
|
26 |
25
|
ad2antrr |
|
27 |
|
fznn0sub |
|
28 |
27
|
adantl |
|
29 |
|
ringgrp |
|
30 |
17 29
|
syl |
|
31 |
30
|
adantl |
|
32 |
|
simp2 |
|
33 |
|
elrabi |
|
34 |
33 7
|
eleq2s |
|
35 |
34
|
3ad2ant1 |
|
36 |
32 32 35
|
3jca |
|
37 |
36
|
adantl |
|
38 |
3 22
|
matecl |
|
39 |
37 38
|
syl |
|
40 |
22 13
|
grpinvcl |
|
41 |
31 39 40
|
syl2an2r |
|
42 |
41
|
adantr |
|
43 |
23 12 26 28 42
|
mulgnn0cld |
|
44 |
2
|
ply1sca |
|
45 |
44
|
adantl |
|
46 |
45
|
eqcomd |
|
47 |
46
|
fveq2d |
|
48 |
47
|
ad2antrr |
|
49 |
43 48
|
eleqtrrd |
|
50 |
|
hashcl |
|
51 |
50
|
ad2antrr |
|
52 |
|
elfzelz |
|
53 |
|
bccl |
|
54 |
51 52 53
|
syl2an |
|
55 |
|
eqid |
|
56 |
5 55
|
mgpbas |
|
57 |
2
|
ply1ring |
|
58 |
5
|
ringmgp |
|
59 |
17 57 58
|
3syl |
|
60 |
59
|
adantl |
|
61 |
60
|
ad2antrr |
|
62 |
|
elfznn0 |
|
63 |
62
|
adantl |
|
64 |
4 2 55
|
vr1cl |
|
65 |
18 64
|
syl |
|
66 |
65
|
ad2antrr |
|
67 |
56 6 61 63 66
|
mulgnn0cld |
|
68 |
|
eqid |
|
69 |
|
eqid |
|
70 |
|
eqid |
|
71 |
55 68 14 69 10 70
|
lmodvsmmulgdi |
|
72 |
21 49 54 67 71
|
syl13anc |
|
73 |
45
|
fveq2d |
|
74 |
15 73
|
eqtr2id |
|
75 |
74
|
ad2antrr |
|
76 |
75
|
oveqd |
|
77 |
76
|
oveq1d |
|
78 |
72 77
|
eqtrd |
|
79 |
78
|
mpteq2dva |
|
80 |
79
|
oveq2d |
|
81 |
16 80
|
eqtrd |
|