Step |
Hyp |
Ref |
Expression |
1 |
|
chp0mat.c |
|
2 |
|
chp0mat.p |
|
3 |
|
chp0mat.a |
|
4 |
|
chp0mat.x |
|
5 |
|
chp0mat.g |
|
6 |
|
chp0mat.m |
|
7 |
|
chpscmat.d |
|
8 |
|
chpscmat.s |
|
9 |
|
chpscmat.m |
|
10 |
|
chpscmatgsum.f |
|
11 |
|
chpscmatgsum.h |
|
12 |
|
chpscmatgsum.e |
|
13 |
|
chpscmatgsum.i |
|
14 |
|
chpscmatgsum.s |
|
15 |
|
chpscmatgsum.z |
|
16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
chpscmatgsumbin |
|
17 |
|
crngring |
|
18 |
17
|
adantl |
|
19 |
2
|
ply1lmod |
|
20 |
18 19
|
syl |
|
21 |
20
|
ad2antrr |
|
22 |
11
|
ringmgp |
|
23 |
18 22
|
syl |
|
24 |
23
|
ad2antrr |
|
25 |
|
fznn0sub |
|
26 |
25
|
adantl |
|
27 |
|
ringgrp |
|
28 |
17 27
|
syl |
|
29 |
28
|
adantl |
|
30 |
|
simp2 |
|
31 |
|
elrabi |
|
32 |
31 7
|
eleq2s |
|
33 |
32
|
3ad2ant1 |
|
34 |
30 30 33
|
3jca |
|
35 |
34
|
adantl |
|
36 |
|
eqid |
|
37 |
3 36
|
matecl |
|
38 |
35 37
|
syl |
|
39 |
36 13
|
grpinvcl |
|
40 |
29 38 39
|
syl2an2r |
|
41 |
40
|
adantr |
|
42 |
11 36
|
mgpbas |
|
43 |
42 12
|
mulgnn0cl |
|
44 |
24 26 41 43
|
syl3anc |
|
45 |
2
|
ply1sca |
|
46 |
45
|
adantl |
|
47 |
46
|
eqcomd |
|
48 |
47
|
fveq2d |
|
49 |
48
|
ad2antrr |
|
50 |
44 49
|
eleqtrrd |
|
51 |
|
hashcl |
|
52 |
51
|
ad2antrr |
|
53 |
|
elfzelz |
|
54 |
|
bccl |
|
55 |
52 53 54
|
syl2an |
|
56 |
2
|
ply1ring |
|
57 |
5
|
ringmgp |
|
58 |
17 56 57
|
3syl |
|
59 |
58
|
adantl |
|
60 |
59
|
ad2antrr |
|
61 |
|
elfznn0 |
|
62 |
61
|
adantl |
|
63 |
|
eqid |
|
64 |
4 2 63
|
vr1cl |
|
65 |
18 64
|
syl |
|
66 |
65
|
ad2antrr |
|
67 |
5 63
|
mgpbas |
|
68 |
67 6
|
mulgnn0cl |
|
69 |
60 62 66 68
|
syl3anc |
|
70 |
|
eqid |
|
71 |
|
eqid |
|
72 |
|
eqid |
|
73 |
63 70 14 71 10 72
|
lmodvsmmulgdi |
|
74 |
21 50 55 69 73
|
syl13anc |
|
75 |
46
|
fveq2d |
|
76 |
15 75
|
eqtr2id |
|
77 |
76
|
ad2antrr |
|
78 |
77
|
oveqd |
|
79 |
78
|
oveq1d |
|
80 |
74 79
|
eqtrd |
|
81 |
80
|
mpteq2dva |
|
82 |
81
|
oveq2d |
|
83 |
16 82
|
eqtrd |
|