Metamath Proof Explorer


Theorem chpsscon1

Description: Hilbert lattice contraposition law for strict ordering. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chpsscon1 A C B C A B B A

Proof

Step Hyp Ref Expression
1 choccl A C A C
2 chpsscon3 A C B C A B B A
3 1 2 sylan A C B C A B B A
4 ococ A C A = A
5 4 adantr A C B C A = A
6 5 psseq2d A C B C B A B A
7 3 6 bitrd A C B C A B B A