Metamath Proof Explorer


Theorem chpsscon2

Description: Hilbert lattice contraposition law for strict ordering. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chpsscon2 A C B C A B B A

Proof

Step Hyp Ref Expression
1 choccl B C B C
2 chpsscon3 A C B C A B B A
3 1 2 sylan2 A C B C A B B A
4 ococ B C B = B
5 4 adantl A C B C B = B
6 5 psseq1d A C B C B A B A
7 3 6 bitrd A C B C A B B A