Metamath Proof Explorer


Theorem chpub

Description: An upper bound on the second Chebyshev function. (Contributed by Mario Carneiro, 8-Apr-2016)

Ref Expression
Assertion chpub A 1 A ψ A θ A + A log A

Proof

Step Hyp Ref Expression
1 chpcl A ψ A
2 1 adantr A 1 A ψ A
3 chtcl A θ A
4 3 adantr A 1 A θ A
5 2 4 resubcld A 1 A ψ A θ A
6 simpl A 1 A A
7 0red A 1 A 0
8 1red A 1 A 1
9 0lt1 0 < 1
10 9 a1i A 1 A 0 < 1
11 simpr A 1 A 1 A
12 7 8 6 10 11 ltletrd A 1 A 0 < A
13 6 12 elrpd A 1 A A +
14 13 rpge0d A 1 A 0 A
15 6 14 resqrtcld A 1 A A
16 ppifi A 0 A Fin
17 15 16 syl A 1 A 0 A Fin
18 13 adantr A 1 A p 0 A A +
19 18 relogcld A 1 A p 0 A log A
20 17 19 fsumrecl A 1 A p 0 A log A
21 13 relogcld A 1 A log A
22 15 21 remulcld A 1 A A log A
23 ppifi A 0 A Fin
24 23 adantr A 1 A 0 A Fin
25 simpr A 1 A p 0 A p 0 A
26 25 elin2d A 1 A p 0 A p
27 prmnn p p
28 26 27 syl A 1 A p 0 A p
29 28 nnrpd A 1 A p 0 A p +
30 29 relogcld A 1 A p 0 A log p
31 21 adantr A 1 A p 0 A log A
32 28 nnred A 1 A p 0 A p
33 prmuz2 p p 2
34 26 33 syl A 1 A p 0 A p 2
35 eluz2gt1 p 2 1 < p
36 34 35 syl A 1 A p 0 A 1 < p
37 32 36 rplogcld A 1 A p 0 A log p +
38 31 37 rerpdivcld A 1 A p 0 A log A log p
39 reflcl log A log p log A log p
40 38 39 syl A 1 A p 0 A log A log p
41 30 40 remulcld A 1 A p 0 A log p log A log p
42 41 recnd A 1 A p 0 A log p log A log p
43 30 recnd A 1 A p 0 A log p
44 24 42 43 fsumsub A 1 A p 0 A log p log A log p log p = p 0 A log p log A log p p 0 A log p
45 0le0 0 0
46 45 a1i A 1 A 0 0
47 8 6 6 14 11 lemul2ad A 1 A A 1 A A
48 6 recnd A 1 A A
49 48 sqsqrtd A 1 A A 2 = A
50 48 mulid1d A 1 A A 1 = A
51 49 50 eqtr4d A 1 A A 2 = A 1
52 48 sqvald A 1 A A 2 = A A
53 47 51 52 3brtr4d A 1 A A 2 A 2
54 6 14 sqrtge0d A 1 A 0 A
55 15 6 54 14 le2sqd A 1 A A A A 2 A 2
56 53 55 mpbird A 1 A A A
57 iccss 0 A 0 0 A A 0 A 0 A
58 7 6 46 56 57 syl22anc A 1 A 0 A 0 A
59 58 ssrind A 1 A 0 A 0 A
60 59 sselda A 1 A p 0 A p 0 A
61 41 30 resubcld A 1 A p 0 A log p log A log p log p
62 61 recnd A 1 A p 0 A log p log A log p log p
63 60 62 syldan A 1 A p 0 A log p log A log p log p
64 eldifi p 0 A 0 A p 0 A
65 64 43 sylan2 A 1 A p 0 A 0 A log p
66 65 mulid2d A 1 A p 0 A 0 A 1 log p = log p
67 25 elin1d A 1 A p 0 A p 0 A
68 0re 0
69 6 adantr A 1 A p 0 A A
70 elicc2 0 A p 0 A p 0 p p A
71 68 69 70 sylancr A 1 A p 0 A p 0 A p 0 p p A
72 67 71 mpbid A 1 A p 0 A p 0 p p A
73 72 simp3d A 1 A p 0 A p A
74 64 73 sylan2 A 1 A p 0 A 0 A p A
75 64 29 sylan2 A 1 A p 0 A 0 A p +
76 13 adantr A 1 A p 0 A 0 A A +
77 75 76 logled A 1 A p 0 A 0 A p A log p log A
78 74 77 mpbid A 1 A p 0 A 0 A log p log A
79 66 78 eqbrtrd A 1 A p 0 A 0 A 1 log p log A
80 1red A 1 A p 0 A 0 A 1
81 21 adantr A 1 A p 0 A 0 A log A
82 64 37 sylan2 A 1 A p 0 A 0 A log p +
83 80 81 82 lemuldivd A 1 A p 0 A 0 A 1 log p log A 1 log A log p
84 79 83 mpbid A 1 A p 0 A 0 A 1 log A log p
85 6 adantr A 1 A p 0 A 0 A A
86 85 recnd A 1 A p 0 A 0 A A
87 86 sqsqrtd A 1 A p 0 A 0 A A 2 = A
88 eldifn p 0 A 0 A ¬ p 0 A
89 88 adantl A 1 A p 0 A 0 A ¬ p 0 A
90 64 26 sylan2 A 1 A p 0 A 0 A p
91 elin p 0 A p 0 A p
92 91 rbaib p p 0 A p 0 A
93 90 92 syl A 1 A p 0 A 0 A p 0 A p 0 A
94 0red A 1 A p 0 A 0 A 0
95 15 adantr A 1 A p 0 A 0 A A
96 64 28 sylan2 A 1 A p 0 A 0 A p
97 96 nnred A 1 A p 0 A 0 A p
98 75 rpge0d A 1 A p 0 A 0 A 0 p
99 elicc2 0 A p 0 A p 0 p p A
100 df-3an p 0 p p A p 0 p p A
101 99 100 bitrdi 0 A p 0 A p 0 p p A
102 101 baibd 0 A p 0 p p 0 A p A
103 94 95 97 98 102 syl22anc A 1 A p 0 A 0 A p 0 A p A
104 93 103 bitrd A 1 A p 0 A 0 A p 0 A p A
105 89 104 mtbid A 1 A p 0 A 0 A ¬ p A
106 95 97 ltnled A 1 A p 0 A 0 A A < p ¬ p A
107 105 106 mpbird A 1 A p 0 A 0 A A < p
108 54 adantr A 1 A p 0 A 0 A 0 A
109 95 97 108 98 lt2sqd A 1 A p 0 A 0 A A < p A 2 < p 2
110 107 109 mpbid A 1 A p 0 A 0 A A 2 < p 2
111 87 110 eqbrtrrd A 1 A p 0 A 0 A A < p 2
112 96 nnsqcld A 1 A p 0 A 0 A p 2
113 112 nnrpd A 1 A p 0 A 0 A p 2 +
114 logltb A + p 2 + A < p 2 log A < log p 2
115 76 113 114 syl2anc A 1 A p 0 A 0 A A < p 2 log A < log p 2
116 111 115 mpbid A 1 A p 0 A 0 A log A < log p 2
117 2z 2
118 relogexp p + 2 log p 2 = 2 log p
119 75 117 118 sylancl A 1 A p 0 A 0 A log p 2 = 2 log p
120 116 119 breqtrd A 1 A p 0 A 0 A log A < 2 log p
121 2re 2
122 121 a1i A 1 A p 0 A 0 A 2
123 81 122 82 ltdivmul2d A 1 A p 0 A 0 A log A log p < 2 log A < 2 log p
124 120 123 mpbird A 1 A p 0 A 0 A log A log p < 2
125 df-2 2 = 1 + 1
126 124 125 breqtrdi A 1 A p 0 A 0 A log A log p < 1 + 1
127 64 38 sylan2 A 1 A p 0 A 0 A log A log p
128 1z 1
129 flbi log A log p 1 log A log p = 1 1 log A log p log A log p < 1 + 1
130 127 128 129 sylancl A 1 A p 0 A 0 A log A log p = 1 1 log A log p log A log p < 1 + 1
131 84 126 130 mpbir2and A 1 A p 0 A 0 A log A log p = 1
132 131 oveq2d A 1 A p 0 A 0 A log p log A log p = log p 1
133 65 mulid1d A 1 A p 0 A 0 A log p 1 = log p
134 132 133 eqtrd A 1 A p 0 A 0 A log p log A log p = log p
135 134 oveq1d A 1 A p 0 A 0 A log p log A log p log p = log p log p
136 65 subidd A 1 A p 0 A 0 A log p log p = 0
137 135 136 eqtrd A 1 A p 0 A 0 A log p log A log p log p = 0
138 59 63 137 24 fsumss A 1 A p 0 A log p log A log p log p = p 0 A log p log A log p log p
139 chpval2 A ψ A = p 0 A log p log A log p
140 139 adantr A 1 A ψ A = p 0 A log p log A log p
141 chtval A θ A = p 0 A log p
142 141 adantr A 1 A θ A = p 0 A log p
143 140 142 oveq12d A 1 A ψ A θ A = p 0 A log p log A log p p 0 A log p
144 44 138 143 3eqtr4rd A 1 A ψ A θ A = p 0 A log p log A log p log p
145 60 61 syldan A 1 A p 0 A log p log A log p log p
146 60 41 syldan A 1 A p 0 A log p log A log p
147 60 37 syldan A 1 A p 0 A log p +
148 147 rpge0d A 1 A p 0 A 0 log p
149 simpr A 1 A p 0 A p 0 A
150 149 elin2d A 1 A p 0 A p
151 150 27 syl A 1 A p 0 A p
152 151 nnrpd A 1 A p 0 A p +
153 152 relogcld A 1 A p 0 A log p
154 146 153 subge02d A 1 A p 0 A 0 log p log p log A log p log p log p log A log p
155 148 154 mpbid A 1 A p 0 A log p log A log p log p log p log A log p
156 60 38 syldan A 1 A p 0 A log A log p
157 flle log A log p log A log p log A log p
158 156 157 syl A 1 A p 0 A log A log p log A log p
159 60 40 syldan A 1 A p 0 A log A log p
160 159 19 147 lemuldiv2d A 1 A p 0 A log p log A log p log A log A log p log A log p
161 158 160 mpbird A 1 A p 0 A log p log A log p log A
162 145 146 19 155 161 letrd A 1 A p 0 A log p log A log p log p log A
163 17 145 19 162 fsumle A 1 A p 0 A log p log A log p log p p 0 A log A
164 144 163 eqbrtrd A 1 A ψ A θ A p 0 A log A
165 21 recnd A 1 A log A
166 fsumconst 0 A Fin log A p 0 A log A = 0 A log A
167 17 165 166 syl2anc A 1 A p 0 A log A = 0 A log A
168 hashcl 0 A Fin 0 A 0
169 17 168 syl A 1 A 0 A 0
170 169 nn0red A 1 A 0 A
171 logge0 A 1 A 0 log A
172 reflcl A A
173 15 172 syl A 1 A A
174 fzfid A 1 A 1 A Fin
175 ppisval A 0 A = 2 A
176 15 175 syl A 1 A 0 A = 2 A
177 inss1 2 A 2 A
178 2eluzge1 2 1
179 fzss1 2 1 2 A 1 A
180 178 179 mp1i A 1 A 2 A 1 A
181 177 180 sstrid A 1 A 2 A 1 A
182 176 181 eqsstrd A 1 A 0 A 1 A
183 ssdomg 1 A Fin 0 A 1 A 0 A 1 A
184 174 182 183 sylc A 1 A 0 A 1 A
185 hashdom 0 A Fin 1 A Fin 0 A 1 A 0 A 1 A
186 17 174 185 syl2anc A 1 A 0 A 1 A 0 A 1 A
187 184 186 mpbird A 1 A 0 A 1 A
188 flge0nn0 A 0 A A 0
189 15 54 188 syl2anc A 1 A A 0
190 hashfz1 A 0 1 A = A
191 189 190 syl A 1 A 1 A = A
192 187 191 breqtrd A 1 A 0 A A
193 flle A A A
194 15 193 syl A 1 A A A
195 170 173 15 192 194 letrd A 1 A 0 A A
196 170 15 21 171 195 lemul1ad A 1 A 0 A log A A log A
197 167 196 eqbrtrd A 1 A p 0 A log A A log A
198 5 20 22 164 197 letrd A 1 A ψ A θ A A log A
199 2 4 22 lesubadd2d A 1 A ψ A θ A A log A ψ A θ A + A log A
200 198 199 mpbid A 1 A ψ A θ A + A log A