Metamath Proof Explorer


Theorem chpwordi

Description: The second Chebyshev function is weakly increasing. (Contributed by Mario Carneiro, 9-Apr-2016)

Ref Expression
Assertion chpwordi A B A B ψ A ψ B

Proof

Step Hyp Ref Expression
1 fzfid A B A B 1 B Fin
2 elfznn n 1 B n
3 2 adantl A B A B n 1 B n
4 vmacl n Λ n
5 3 4 syl A B A B n 1 B Λ n
6 vmage0 n 0 Λ n
7 3 6 syl A B A B n 1 B 0 Λ n
8 flword2 A B A B B A
9 fzss2 B A 1 A 1 B
10 8 9 syl A B A B 1 A 1 B
11 1 5 7 10 fsumless A B A B n = 1 A Λ n n = 1 B Λ n
12 chpval A ψ A = n = 1 A Λ n
13 12 3ad2ant1 A B A B ψ A = n = 1 A Λ n
14 chpval B ψ B = n = 1 B Λ n
15 14 3ad2ant2 A B A B ψ B = n = 1 B Λ n
16 11 13 15 3brtr4d A B A B ψ A ψ B