Metamath Proof Explorer


Theorem chrcl

Description: Closure of the characteristic. (Contributed by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypothesis chrcl.c C = chr R
Assertion chrcl R Ring C 0

Proof

Step Hyp Ref Expression
1 chrcl.c C = chr R
2 eqid od R = od R
3 eqid 1 R = 1 R
4 2 3 1 chrval od R 1 R = C
5 eqid Base R = Base R
6 5 3 ringidcl R Ring 1 R Base R
7 5 2 odcl 1 R Base R od R 1 R 0
8 6 7 syl R Ring od R 1 R 0
9 4 8 eqeltrrid R Ring C 0