Database
BASIC ALGEBRAIC STRUCTURES
The complex numbers as an algebraic extensible structure
Algebraic constructions based on the complex numbers
chrcl
Next ⟩
chrid
Metamath Proof Explorer
Ascii
Unicode
Theorem
chrcl
Description:
Closure of the characteristic.
(Contributed by
Mario Carneiro
, 23-Sep-2015)
Ref
Expression
Hypothesis
chrcl.c
⊢
C
=
chr
⁡
R
Assertion
chrcl
⊢
R
∈
Ring
→
C
∈
ℕ
0
Proof
Step
Hyp
Ref
Expression
1
chrcl.c
⊢
C
=
chr
⁡
R
2
eqid
⊢
od
⁡
R
=
od
⁡
R
3
eqid
⊢
1
R
=
1
R
4
2
3
1
chrval
⊢
od
⁡
R
⁡
1
R
=
C
5
eqid
⊢
Base
R
=
Base
R
6
5
3
ringidcl
⊢
R
∈
Ring
→
1
R
∈
Base
R
7
5
2
odcl
⊢
1
R
∈
Base
R
→
od
⁡
R
⁡
1
R
∈
ℕ
0
8
6
7
syl
⊢
R
∈
Ring
→
od
⁡
R
⁡
1
R
∈
ℕ
0
9
4
8
eqeltrrid
⊢
R
∈
Ring
→
C
∈
ℕ
0