Description: If two integers are congruent relative to the ring characteristic, their images in the ring are the same. (Contributed by Mario Carneiro, 24-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chrcl.c | |
|
| chrid.l | |
||
| chrid.z | |
||
| Assertion | chrcong | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chrcl.c | |
|
| 2 | chrid.l | |
|
| 3 | chrid.z | |
|
| 4 | eqid | |
|
| 5 | eqid | |
|
| 6 | 4 5 1 | chrval | |
| 7 | 6 | breq1i | |
| 8 | ringgrp | |
|
| 9 | 8 | 3ad2ant1 | |
| 10 | eqid | |
|
| 11 | 10 5 | ringidcl | |
| 12 | 11 | 3ad2ant1 | |
| 13 | simp2 | |
|
| 14 | simp3 | |
|
| 15 | eqid | |
|
| 16 | 10 4 15 3 | odcong | |
| 17 | 9 12 13 14 16 | syl112anc | |
| 18 | 7 17 | bitr3id | |
| 19 | 2 15 5 | zrhmulg | |
| 20 | 19 | 3adant3 | |
| 21 | 2 15 5 | zrhmulg | |
| 22 | 21 | 3adant2 | |
| 23 | 20 22 | eqeq12d | |
| 24 | 18 23 | bitr4d | |