Metamath Proof Explorer


Theorem chrcong

Description: If two integers are congruent relative to the ring characteristic, their images in the ring are the same. (Contributed by Mario Carneiro, 24-Sep-2015)

Ref Expression
Hypotheses chrcl.c C = chr R
chrid.l L = ℤRHom R
chrid.z 0 ˙ = 0 R
Assertion chrcong R Ring M N C M N L M = L N

Proof

Step Hyp Ref Expression
1 chrcl.c C = chr R
2 chrid.l L = ℤRHom R
3 chrid.z 0 ˙ = 0 R
4 eqid od R = od R
5 eqid 1 R = 1 R
6 4 5 1 chrval od R 1 R = C
7 6 breq1i od R 1 R M N C M N
8 ringgrp R Ring R Grp
9 8 3ad2ant1 R Ring M N R Grp
10 eqid Base R = Base R
11 10 5 ringidcl R Ring 1 R Base R
12 11 3ad2ant1 R Ring M N 1 R Base R
13 simp2 R Ring M N M
14 simp3 R Ring M N N
15 eqid R = R
16 10 4 15 3 odcong R Grp 1 R Base R M N od R 1 R M N M R 1 R = N R 1 R
17 9 12 13 14 16 syl112anc R Ring M N od R 1 R M N M R 1 R = N R 1 R
18 7 17 bitr3id R Ring M N C M N M R 1 R = N R 1 R
19 2 15 5 zrhmulg R Ring M L M = M R 1 R
20 19 3adant3 R Ring M N L M = M R 1 R
21 2 15 5 zrhmulg R Ring N L N = N R 1 R
22 21 3adant2 R Ring M N L N = N R 1 R
23 20 22 eqeq12d R Ring M N L M = L N M R 1 R = N R 1 R
24 18 23 bitr4d R Ring M N C M N L M = L N