Metamath Proof Explorer


Theorem chrdvds

Description: The ZZ ring homomorphism is zero only at multiples of the characteristic. (Contributed by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypotheses chrcl.c C = chr R
chrid.l L = ℤRHom R
chrid.z 0 ˙ = 0 R
Assertion chrdvds R Ring N C N L N = 0 ˙

Proof

Step Hyp Ref Expression
1 chrcl.c C = chr R
2 chrid.l L = ℤRHom R
3 chrid.z 0 ˙ = 0 R
4 eqid od R = od R
5 eqid 1 R = 1 R
6 4 5 1 chrval od R 1 R = C
7 6 breq1i od R 1 R N C N
8 ringgrp R Ring R Grp
9 8 adantr R Ring N R Grp
10 eqid Base R = Base R
11 10 5 ringidcl R Ring 1 R Base R
12 11 adantr R Ring N 1 R Base R
13 simpr R Ring N N
14 eqid R = R
15 10 4 14 3 oddvds R Grp 1 R Base R N od R 1 R N N R 1 R = 0 ˙
16 9 12 13 15 syl3anc R Ring N od R 1 R N N R 1 R = 0 ˙
17 7 16 bitr3id R Ring N C N N R 1 R = 0 ˙
18 2 14 5 zrhmulg R Ring N L N = N R 1 R
19 18 eqeq1d R Ring N L N = 0 ˙ N R 1 R = 0 ˙
20 17 19 bitr4d R Ring N C N L N = 0 ˙