Metamath Proof Explorer


Theorem chrelat2

Description: A consequence of relative atomicity. (Contributed by NM, 1-Jul-2004) (New usage is discouraged.)

Ref Expression
Assertion chrelat2 A C B C ¬ A B x HAtoms x A ¬ x B

Proof

Step Hyp Ref Expression
1 sseq1 A = if A C A A B if A C A B
2 1 notbid A = if A C A ¬ A B ¬ if A C A B
3 sseq2 A = if A C A x A x if A C A
4 3 anbi1d A = if A C A x A ¬ x B x if A C A ¬ x B
5 4 rexbidv A = if A C A x HAtoms x A ¬ x B x HAtoms x if A C A ¬ x B
6 2 5 bibi12d A = if A C A ¬ A B x HAtoms x A ¬ x B ¬ if A C A B x HAtoms x if A C A ¬ x B
7 sseq2 B = if B C B if A C A B if A C A if B C B
8 7 notbid B = if B C B ¬ if A C A B ¬ if A C A if B C B
9 sseq2 B = if B C B x B x if B C B
10 9 notbid B = if B C B ¬ x B ¬ x if B C B
11 10 anbi2d B = if B C B x if A C A ¬ x B x if A C A ¬ x if B C B
12 11 rexbidv B = if B C B x HAtoms x if A C A ¬ x B x HAtoms x if A C A ¬ x if B C B
13 8 12 bibi12d B = if B C B ¬ if A C A B x HAtoms x if A C A ¬ x B ¬ if A C A if B C B x HAtoms x if A C A ¬ x if B C B
14 ifchhv if A C A C
15 ifchhv if B C B C
16 14 15 chrelat2i ¬ if A C A if B C B x HAtoms x if A C A ¬ x if B C B
17 6 13 16 dedth2h A C B C ¬ A B x HAtoms x A ¬ x B