Metamath Proof Explorer


Theorem chrelati

Description: The Hilbert lattice is relatively atomic. Remark 2 of Kalmbach p. 149. (Contributed by NM, 11-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses chpssat.1 A C
chpssat.2 B C
Assertion chrelati A B x HAtoms A A x A x B

Proof

Step Hyp Ref Expression
1 chpssat.1 A C
2 chpssat.2 B C
3 1 2 chpssati A B x HAtoms x B ¬ x A
4 ancom x B ¬ x A ¬ x A x B
5 pssss A B A B
6 atelch x HAtoms x C
7 chnle A C x C ¬ x A A A x
8 1 7 mpan x C ¬ x A A A x
9 8 adantl A B x C ¬ x A A A x
10 ibar A B x B A B x B
11 chlub A C x C B C A B x B A x B
12 1 2 11 mp3an13 x C A B x B A x B
13 10 12 sylan9bb A B x C x B A x B
14 9 13 anbi12d A B x C ¬ x A x B A A x A x B
15 5 6 14 syl2an A B x HAtoms ¬ x A x B A A x A x B
16 4 15 syl5bb A B x HAtoms x B ¬ x A A A x A x B
17 16 rexbidva A B x HAtoms x B ¬ x A x HAtoms A A x A x B
18 3 17 mpbid A B x HAtoms A A x A x B