Metamath Proof Explorer


Theorem chrid

Description: The canonical ZZ ring homomorphism applied to a ring's characteristic is zero. (Contributed by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypotheses chrcl.c C = chr R
chrid.l L = ℤRHom R
chrid.z 0 ˙ = 0 R
Assertion chrid R Ring L C = 0 ˙

Proof

Step Hyp Ref Expression
1 chrcl.c C = chr R
2 chrid.l L = ℤRHom R
3 chrid.z 0 ˙ = 0 R
4 1 chrcl R Ring C 0
5 4 nn0zd R Ring C
6 eqid R = R
7 eqid 1 R = 1 R
8 2 6 7 zrhmulg R Ring C L C = C R 1 R
9 5 8 mpdan R Ring L C = C R 1 R
10 eqid od R = od R
11 10 7 1 chrval od R 1 R = C
12 11 oveq1i od R 1 R R 1 R = C R 1 R
13 eqid Base R = Base R
14 13 7 ringidcl R Ring 1 R Base R
15 13 10 6 3 odid 1 R Base R od R 1 R R 1 R = 0 ˙
16 14 15 syl R Ring od R 1 R R 1 R = 0 ˙
17 12 16 eqtr3id R Ring C R 1 R = 0 ˙
18 9 17 eqtrd R Ring L C = 0 ˙