Metamath Proof Explorer


Theorem chrnzr

Description: Nonzero rings are precisely those with characteristic not 1. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Assertion chrnzr R Ring R NzRing chr R 1

Proof

Step Hyp Ref Expression
1 eqid 1 R = 1 R
2 eqid 0 R = 0 R
3 1 2 isnzr R NzRing R Ring 1 R 0 R
4 3 baib R Ring R NzRing 1 R 0 R
5 1z 1
6 eqid chr R = chr R
7 eqid ℤRHom R = ℤRHom R
8 6 7 2 chrdvds R Ring 1 chr R 1 ℤRHom R 1 = 0 R
9 5 8 mpan2 R Ring chr R 1 ℤRHom R 1 = 0 R
10 6 chrcl R Ring chr R 0
11 dvds1 chr R 0 chr R 1 chr R = 1
12 10 11 syl R Ring chr R 1 chr R = 1
13 7 1 zrh1 R Ring ℤRHom R 1 = 1 R
14 13 eqeq1d R Ring ℤRHom R 1 = 0 R 1 R = 0 R
15 9 12 14 3bitr3d R Ring chr R = 1 1 R = 0 R
16 15 necon3bid R Ring chr R 1 1 R 0 R
17 4 16 bitr4d R Ring R NzRing chr R 1