Metamath Proof Explorer


Theorem chrrhm

Description: The characteristic restriction on ring homomorphisms. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Assertion chrrhm F R RingHom S chr S chr R

Proof

Step Hyp Ref Expression
1 rhmrcl1 F R RingHom S R Ring
2 eqid ℤRHom R = ℤRHom R
3 2 zrhrhm R Ring ℤRHom R ring RingHom R
4 1 3 syl F R RingHom S ℤRHom R ring RingHom R
5 zringbas = Base ring
6 eqid Base R = Base R
7 5 6 rhmf ℤRHom R ring RingHom R ℤRHom R : Base R
8 ffn ℤRHom R : Base R ℤRHom R Fn
9 4 7 8 3syl F R RingHom S ℤRHom R Fn
10 eqid chr R = chr R
11 10 chrcl R Ring chr R 0
12 nn0z chr R 0 chr R
13 1 11 12 3syl F R RingHom S chr R
14 fvco2 ℤRHom R Fn chr R F ℤRHom R chr R = F ℤRHom R chr R
15 9 13 14 syl2anc F R RingHom S F ℤRHom R chr R = F ℤRHom R chr R
16 eqid 0 R = 0 R
17 10 2 16 chrid R Ring ℤRHom R chr R = 0 R
18 1 17 syl F R RingHom S ℤRHom R chr R = 0 R
19 18 fveq2d F R RingHom S F ℤRHom R chr R = F 0 R
20 15 19 eqtrd F R RingHom S F ℤRHom R chr R = F 0 R
21 rhmco F R RingHom S ℤRHom R ring RingHom R F ℤRHom R ring RingHom S
22 4 21 mpdan F R RingHom S F ℤRHom R ring RingHom S
23 rhmrcl2 F R RingHom S S Ring
24 eqid ℤRHom S = ℤRHom S
25 24 zrhrhmb S Ring F ℤRHom R ring RingHom S F ℤRHom R = ℤRHom S
26 23 25 syl F R RingHom S F ℤRHom R ring RingHom S F ℤRHom R = ℤRHom S
27 22 26 mpbid F R RingHom S F ℤRHom R = ℤRHom S
28 27 fveq1d F R RingHom S F ℤRHom R chr R = ℤRHom S chr R
29 rhmghm F R RingHom S F R GrpHom S
30 eqid 0 S = 0 S
31 16 30 ghmid F R GrpHom S F 0 R = 0 S
32 29 31 syl F R RingHom S F 0 R = 0 S
33 20 28 32 3eqtr3d F R RingHom S ℤRHom S chr R = 0 S
34 eqid chr S = chr S
35 34 24 30 chrdvds S Ring chr R chr S chr R ℤRHom S chr R = 0 S
36 23 13 35 syl2anc F R RingHom S chr S chr R ℤRHom S chr R = 0 S
37 33 36 mpbird F R RingHom S chr S chr R