Metamath Proof Explorer


Theorem chrval

Description: Definition substitution of the ring characteristic. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses chrval.o O = od R
chrval.u 1 ˙ = 1 R
chrval.c C = chr R
Assertion chrval O 1 ˙ = C

Proof

Step Hyp Ref Expression
1 chrval.o O = od R
2 chrval.u 1 ˙ = 1 R
3 chrval.c C = chr R
4 fveq2 r = R od r = od R
5 4 1 eqtr4di r = R od r = O
6 fveq2 r = R 1 r = 1 R
7 6 2 eqtr4di r = R 1 r = 1 ˙
8 5 7 fveq12d r = R od r 1 r = O 1 ˙
9 df-chr chr = r V od r 1 r
10 fvex O 1 ˙ V
11 8 9 10 fvmpt R V chr R = O 1 ˙
12 fvprc ¬ R V chr R =
13 fvprc ¬ R V od R =
14 1 13 eqtrid ¬ R V O =
15 14 fveq1d ¬ R V O 1 ˙ = 1 ˙
16 0fv 1 ˙ =
17 15 16 eqtrdi ¬ R V O 1 ˙ =
18 12 17 eqtr4d ¬ R V chr R = O 1 ˙
19 11 18 pm2.61i chr R = O 1 ˙
20 3 19 eqtr2i O 1 ˙ = C