Metamath Proof Explorer


Theorem chscl

Description: The subspace sum of two closed orthogonal spaces is closed. (Contributed by NM, 19-Oct-1999) (Proof shortened by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses chscl.1 φ A C
chscl.2 φ B C
chscl.3 φ B A
Assertion chscl φ A + B C

Proof

Step Hyp Ref Expression
1 chscl.1 φ A C
2 chscl.2 φ B C
3 chscl.3 φ B A
4 chsh A C A S
5 1 4 syl φ A S
6 chsh B C B S
7 2 6 syl φ B S
8 shscl A S B S A + B S
9 5 7 8 syl2anc φ A + B S
10 1 adantr φ f : A + B f v z A C
11 2 adantr φ f : A + B f v z B C
12 3 adantr φ f : A + B f v z B A
13 simprl φ f : A + B f v z f : A + B
14 simprr φ f : A + B f v z f v z
15 eqid x proj A f x = x proj A f x
16 eqid x proj B f x = x proj B f x
17 10 11 12 13 14 15 16 chscllem4 φ f : A + B f v z z A + B
18 17 ex φ f : A + B f v z z A + B
19 18 alrimivv φ f z f : A + B f v z z A + B
20 isch2 A + B C A + B S f z f : A + B f v z z A + B
21 9 19 20 sylanbrc φ A + B C