Step |
Hyp |
Ref |
Expression |
1 |
|
chscl.1 |
|
2 |
|
chscl.2 |
|
3 |
|
chscl.3 |
|
4 |
|
chsh |
|
5 |
1 4
|
syl |
|
6 |
|
chsh |
|
7 |
2 6
|
syl |
|
8 |
|
shscl |
|
9 |
5 7 8
|
syl2anc |
|
10 |
1
|
adantr |
|
11 |
2
|
adantr |
|
12 |
3
|
adantr |
|
13 |
|
simprl |
|
14 |
|
simprr |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
10 11 12 13 14 15 16
|
chscllem4 |
|
18 |
17
|
ex |
|
19 |
18
|
alrimivv |
|
20 |
|
isch2 |
|
21 |
9 19 20
|
sylanbrc |
|