Metamath Proof Explorer


Theorem chscllem1

Description: Lemma for chscl . (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses chscl.1 φ A C
chscl.2 φ B C
chscl.3 φ B A
chscl.4 φ H : A + B
chscl.5 φ H v u
chscl.6 F = n proj A H n
Assertion chscllem1 φ F : A

Proof

Step Hyp Ref Expression
1 chscl.1 φ A C
2 chscl.2 φ B C
3 chscl.3 φ B A
4 chscl.4 φ H : A + B
5 chscl.5 φ H v u
6 chscl.6 F = n proj A H n
7 eqid proj A H n = proj A H n
8 1 adantr φ n A C
9 4 ffvelrnda φ n H n A + B
10 chsh B C B S
11 2 10 syl φ B S
12 chsh A C A S
13 1 12 syl φ A S
14 shocsh A S A S
15 13 14 syl φ A S
16 shless B S A S A S B A B + A A + A
17 11 15 13 3 16 syl31anc φ B + A A + A
18 shscom A S B S A + B = B + A
19 13 11 18 syl2anc φ A + B = B + A
20 shscom A S A S A + A = A + A
21 13 15 20 syl2anc φ A + A = A + A
22 17 19 21 3sstr4d φ A + B A + A
23 22 sselda φ H n A + B H n A + A
24 9 23 syldan φ n H n A + A
25 pjpreeq A C H n A + A proj A H n = proj A H n proj A H n A x A H n = proj A H n + x
26 8 24 25 syl2anc φ n proj A H n = proj A H n proj A H n A x A H n = proj A H n + x
27 7 26 mpbii φ n proj A H n A x A H n = proj A H n + x
28 27 simpld φ n proj A H n A
29 28 6 fmptd φ F : A