Step |
Hyp |
Ref |
Expression |
1 |
|
chscl.1 |
|
2 |
|
chscl.2 |
|
3 |
|
chscl.3 |
|
4 |
|
chscl.4 |
|
5 |
|
chscl.5 |
|
6 |
|
chscl.6 |
|
7 |
1 2 3 4 5 6
|
chscllem1 |
|
8 |
|
chss |
|
9 |
1 8
|
syl |
|
10 |
7 9
|
fssd |
|
11 |
|
hlimcaui |
|
12 |
5 11
|
syl |
|
13 |
|
hcaucvg |
|
14 |
12 13
|
sylan |
|
15 |
|
eluznn |
|
16 |
15
|
adantll |
|
17 |
|
chsh |
|
18 |
1 17
|
syl |
|
19 |
|
chsh |
|
20 |
2 19
|
syl |
|
21 |
|
shscl |
|
22 |
18 20 21
|
syl2anc |
|
23 |
|
shss |
|
24 |
22 23
|
syl |
|
25 |
24
|
adantr |
|
26 |
4
|
ffvelrnda |
|
27 |
25 26
|
sseldd |
|
28 |
27
|
adantrr |
|
29 |
4 24
|
fssd |
|
30 |
29
|
adantr |
|
31 |
|
simprr |
|
32 |
30 31
|
ffvelrnd |
|
33 |
|
hvsubcl |
|
34 |
28 32 33
|
syl2anc |
|
35 |
9
|
adantr |
|
36 |
7
|
ffvelrnda |
|
37 |
35 36
|
sseldd |
|
38 |
37
|
adantrr |
|
39 |
9
|
adantr |
|
40 |
7
|
adantr |
|
41 |
40 31
|
ffvelrnd |
|
42 |
39 41
|
sseldd |
|
43 |
|
hvsubcl |
|
44 |
38 42 43
|
syl2anc |
|
45 |
|
hvsubcl |
|
46 |
34 44 45
|
syl2anc |
|
47 |
|
normcl |
|
48 |
46 47
|
syl |
|
49 |
48
|
sqge0d |
|
50 |
|
normcl |
|
51 |
44 50
|
syl |
|
52 |
51
|
resqcld |
|
53 |
48
|
resqcld |
|
54 |
52 53
|
addge01d |
|
55 |
49 54
|
mpbid |
|
56 |
18
|
adantr |
|
57 |
36
|
adantrr |
|
58 |
|
shsubcl |
|
59 |
56 57 41 58
|
syl3anc |
|
60 |
|
hvsubsub4 |
|
61 |
28 32 38 42 60
|
syl22anc |
|
62 |
|
ocsh |
|
63 |
39 62
|
syl |
|
64 |
|
2fveq3 |
|
65 |
|
fvex |
|
66 |
64 6 65
|
fvmpt |
|
67 |
66
|
eqcomd |
|
68 |
67
|
adantl |
|
69 |
1
|
adantr |
|
70 |
9 62
|
syl |
|
71 |
|
shless |
|
72 |
20 70 18 3 71
|
syl31anc |
|
73 |
|
shscom |
|
74 |
18 20 73
|
syl2anc |
|
75 |
|
shscom |
|
76 |
18 70 75
|
syl2anc |
|
77 |
72 74 76
|
3sstr4d |
|
78 |
77
|
adantr |
|
79 |
78 26
|
sseldd |
|
80 |
|
pjpreeq |
|
81 |
69 79 80
|
syl2anc |
|
82 |
68 81
|
mpbid |
|
83 |
82
|
simprd |
|
84 |
27
|
adantr |
|
85 |
37
|
adantr |
|
86 |
|
shss |
|
87 |
70 86
|
syl |
|
88 |
87
|
adantr |
|
89 |
88
|
sselda |
|
90 |
|
hvsubadd |
|
91 |
84 85 89 90
|
syl3anc |
|
92 |
|
eqcom |
|
93 |
|
eqcom |
|
94 |
91 92 93
|
3bitr4g |
|
95 |
94
|
rexbidva |
|
96 |
83 95
|
mpbird |
|
97 |
|
risset |
|
98 |
96 97
|
sylibr |
|
99 |
98
|
adantrr |
|
100 |
|
eleq1w |
|
101 |
100
|
anbi2d |
|
102 |
|
fveq2 |
|
103 |
|
fveq2 |
|
104 |
102 103
|
oveq12d |
|
105 |
104
|
eleq1d |
|
106 |
101 105
|
imbi12d |
|
107 |
106 98
|
chvarvv |
|
108 |
107
|
adantrl |
|
109 |
|
shsubcl |
|
110 |
63 99 108 109
|
syl3anc |
|
111 |
61 110
|
eqeltrd |
|
112 |
|
shocorth |
|
113 |
56 112
|
syl |
|
114 |
59 111 113
|
mp2and |
|
115 |
|
normpyth |
|
116 |
44 46 115
|
syl2anc |
|
117 |
114 116
|
mpd |
|
118 |
|
hvpncan3 |
|
119 |
44 34 118
|
syl2anc |
|
120 |
119
|
fveq2d |
|
121 |
120
|
oveq1d |
|
122 |
117 121
|
eqtr3d |
|
123 |
55 122
|
breqtrd |
|
124 |
|
normcl |
|
125 |
34 124
|
syl |
|
126 |
|
normge0 |
|
127 |
44 126
|
syl |
|
128 |
|
normge0 |
|
129 |
34 128
|
syl |
|
130 |
51 125 127 129
|
le2sqd |
|
131 |
123 130
|
mpbird |
|
132 |
131
|
adantlr |
|
133 |
51
|
adantlr |
|
134 |
125
|
adantlr |
|
135 |
|
rpre |
|
136 |
135
|
ad2antlr |
|
137 |
|
lelttr |
|
138 |
133 134 136 137
|
syl3anc |
|
139 |
132 138
|
mpand |
|
140 |
139
|
anassrs |
|
141 |
16 140
|
syldan |
|
142 |
141
|
ralimdva |
|
143 |
142
|
reximdva |
|
144 |
14 143
|
mpd |
|
145 |
144
|
ralrimiva |
|
146 |
|
hcau |
|
147 |
10 145 146
|
sylanbrc |
|
148 |
|
ax-hcompl |
|
149 |
|
hlimf |
|
150 |
|
ffn |
|
151 |
149 150
|
ax-mp |
|
152 |
|
fnbr |
|
153 |
151 152
|
mpan |
|
154 |
153
|
rexlimivw |
|
155 |
147 148 154
|
3syl |
|