Metamath Proof Explorer


Theorem chscllem2

Description: Lemma for chscl . (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses chscl.1 φ A C
chscl.2 φ B C
chscl.3 φ B A
chscl.4 φ H : A + B
chscl.5 φ H v u
chscl.6 F = n proj A H n
Assertion chscllem2 φ F dom v

Proof

Step Hyp Ref Expression
1 chscl.1 φ A C
2 chscl.2 φ B C
3 chscl.3 φ B A
4 chscl.4 φ H : A + B
5 chscl.5 φ H v u
6 chscl.6 F = n proj A H n
7 1 2 3 4 5 6 chscllem1 φ F : A
8 chss A C A
9 1 8 syl φ A
10 7 9 fssd φ F :
11 hlimcaui H v u H Cauchy
12 5 11 syl φ H Cauchy
13 hcaucvg H Cauchy x + j k j norm H j - H k < x
14 12 13 sylan φ x + j k j norm H j - H k < x
15 eluznn j k j k
16 15 adantll φ x + j k j k
17 chsh A C A S
18 1 17 syl φ A S
19 chsh B C B S
20 2 19 syl φ B S
21 shscl A S B S A + B S
22 18 20 21 syl2anc φ A + B S
23 shss A + B S A + B
24 22 23 syl φ A + B
25 24 adantr φ j A + B
26 4 ffvelrnda φ j H j A + B
27 25 26 sseldd φ j H j
28 27 adantrr φ j k H j
29 4 24 fssd φ H :
30 29 adantr φ j k H :
31 simprr φ j k k
32 30 31 ffvelrnd φ j k H k
33 hvsubcl H j H k H j - H k
34 28 32 33 syl2anc φ j k H j - H k
35 9 adantr φ j A
36 7 ffvelrnda φ j F j A
37 35 36 sseldd φ j F j
38 37 adantrr φ j k F j
39 9 adantr φ j k A
40 7 adantr φ j k F : A
41 40 31 ffvelrnd φ j k F k A
42 39 41 sseldd φ j k F k
43 hvsubcl F j F k F j - F k
44 38 42 43 syl2anc φ j k F j - F k
45 hvsubcl H j - H k F j - F k H j - H k - F j - F k
46 34 44 45 syl2anc φ j k H j - H k - F j - F k
47 normcl H j - H k - F j - F k norm H j - H k - F j - F k
48 46 47 syl φ j k norm H j - H k - F j - F k
49 48 sqge0d φ j k 0 norm H j - H k - F j - F k 2
50 normcl F j - F k norm F j - F k
51 44 50 syl φ j k norm F j - F k
52 51 resqcld φ j k norm F j - F k 2
53 48 resqcld φ j k norm H j - H k - F j - F k 2
54 52 53 addge01d φ j k 0 norm H j - H k - F j - F k 2 norm F j - F k 2 norm F j - F k 2 + norm H j - H k - F j - F k 2
55 49 54 mpbid φ j k norm F j - F k 2 norm F j - F k 2 + norm H j - H k - F j - F k 2
56 18 adantr φ j k A S
57 36 adantrr φ j k F j A
58 shsubcl A S F j A F k A F j - F k A
59 56 57 41 58 syl3anc φ j k F j - F k A
60 hvsubsub4 H j H k F j F k H j - H k - F j - F k = H j - F j - H k - F k
61 28 32 38 42 60 syl22anc φ j k H j - H k - F j - F k = H j - F j - H k - F k
62 ocsh A A S
63 39 62 syl φ j k A S
64 2fveq3 n = j proj A H n = proj A H j
65 fvex proj A H j V
66 64 6 65 fvmpt j F j = proj A H j
67 66 eqcomd j proj A H j = F j
68 67 adantl φ j proj A H j = F j
69 1 adantr φ j A C
70 9 62 syl φ A S
71 shless B S A S A S B A B + A A + A
72 20 70 18 3 71 syl31anc φ B + A A + A
73 shscom A S B S A + B = B + A
74 18 20 73 syl2anc φ A + B = B + A
75 shscom A S A S A + A = A + A
76 18 70 75 syl2anc φ A + A = A + A
77 72 74 76 3sstr4d φ A + B A + A
78 77 adantr φ j A + B A + A
79 78 26 sseldd φ j H j A + A
80 pjpreeq A C H j A + A proj A H j = F j F j A x A H j = F j + x
81 69 79 80 syl2anc φ j proj A H j = F j F j A x A H j = F j + x
82 68 81 mpbid φ j F j A x A H j = F j + x
83 82 simprd φ j x A H j = F j + x
84 27 adantr φ j x A H j
85 37 adantr φ j x A F j
86 shss A S A
87 70 86 syl φ A
88 87 adantr φ j A
89 88 sselda φ j x A x
90 hvsubadd H j F j x H j - F j = x F j + x = H j
91 84 85 89 90 syl3anc φ j x A H j - F j = x F j + x = H j
92 eqcom x = H j - F j H j - F j = x
93 eqcom H j = F j + x F j + x = H j
94 91 92 93 3bitr4g φ j x A x = H j - F j H j = F j + x
95 94 rexbidva φ j x A x = H j - F j x A H j = F j + x
96 83 95 mpbird φ j x A x = H j - F j
97 risset H j - F j A x A x = H j - F j
98 96 97 sylibr φ j H j - F j A
99 98 adantrr φ j k H j - F j A
100 eleq1w j = k j k
101 100 anbi2d j = k φ j φ k
102 fveq2 j = k H j = H k
103 fveq2 j = k F j = F k
104 102 103 oveq12d j = k H j - F j = H k - F k
105 104 eleq1d j = k H j - F j A H k - F k A
106 101 105 imbi12d j = k φ j H j - F j A φ k H k - F k A
107 106 98 chvarvv φ k H k - F k A
108 107 adantrl φ j k H k - F k A
109 shsubcl A S H j - F j A H k - F k A H j - F j - H k - F k A
110 63 99 108 109 syl3anc φ j k H j - F j - H k - F k A
111 61 110 eqeltrd φ j k H j - H k - F j - F k A
112 shocorth A S F j - F k A H j - H k - F j - F k A F j - F k ih H j - H k - F j - F k = 0
113 56 112 syl φ j k F j - F k A H j - H k - F j - F k A F j - F k ih H j - H k - F j - F k = 0
114 59 111 113 mp2and φ j k F j - F k ih H j - H k - F j - F k = 0
115 normpyth F j - F k H j - H k - F j - F k F j - F k ih H j - H k - F j - F k = 0 norm F j - F k + H j - H k - F j - F k 2 = norm F j - F k 2 + norm H j - H k - F j - F k 2
116 44 46 115 syl2anc φ j k F j - F k ih H j - H k - F j - F k = 0 norm F j - F k + H j - H k - F j - F k 2 = norm F j - F k 2 + norm H j - H k - F j - F k 2
117 114 116 mpd φ j k norm F j - F k + H j - H k - F j - F k 2 = norm F j - F k 2 + norm H j - H k - F j - F k 2
118 hvpncan3 F j - F k H j - H k F j - F k + H j - H k - F j - F k = H j - H k
119 44 34 118 syl2anc φ j k F j - F k + H j - H k - F j - F k = H j - H k
120 119 fveq2d φ j k norm F j - F k + H j - H k - F j - F k = norm H j - H k
121 120 oveq1d φ j k norm F j - F k + H j - H k - F j - F k 2 = norm H j - H k 2
122 117 121 eqtr3d φ j k norm F j - F k 2 + norm H j - H k - F j - F k 2 = norm H j - H k 2
123 55 122 breqtrd φ j k norm F j - F k 2 norm H j - H k 2
124 normcl H j - H k norm H j - H k
125 34 124 syl φ j k norm H j - H k
126 normge0 F j - F k 0 norm F j - F k
127 44 126 syl φ j k 0 norm F j - F k
128 normge0 H j - H k 0 norm H j - H k
129 34 128 syl φ j k 0 norm H j - H k
130 51 125 127 129 le2sqd φ j k norm F j - F k norm H j - H k norm F j - F k 2 norm H j - H k 2
131 123 130 mpbird φ j k norm F j - F k norm H j - H k
132 131 adantlr φ x + j k norm F j - F k norm H j - H k
133 51 adantlr φ x + j k norm F j - F k
134 125 adantlr φ x + j k norm H j - H k
135 rpre x + x
136 135 ad2antlr φ x + j k x
137 lelttr norm F j - F k norm H j - H k x norm F j - F k norm H j - H k norm H j - H k < x norm F j - F k < x
138 133 134 136 137 syl3anc φ x + j k norm F j - F k norm H j - H k norm H j - H k < x norm F j - F k < x
139 132 138 mpand φ x + j k norm H j - H k < x norm F j - F k < x
140 139 anassrs φ x + j k norm H j - H k < x norm F j - F k < x
141 16 140 syldan φ x + j k j norm H j - H k < x norm F j - F k < x
142 141 ralimdva φ x + j k j norm H j - H k < x k j norm F j - F k < x
143 142 reximdva φ x + j k j norm H j - H k < x j k j norm F j - F k < x
144 14 143 mpd φ x + j k j norm F j - F k < x
145 144 ralrimiva φ x + j k j norm F j - F k < x
146 hcau F Cauchy F : x + j k j norm F j - F k < x
147 10 145 146 sylanbrc φ F Cauchy
148 ax-hcompl F Cauchy x F v x
149 hlimf v : dom v
150 ffn v : dom v v Fn dom v
151 149 150 ax-mp v Fn dom v
152 fnbr v Fn dom v F v x F dom v
153 151 152 mpan F v x F dom v
154 153 rexlimivw x F v x F dom v
155 147 148 154 3syl φ F dom v