Step |
Hyp |
Ref |
Expression |
1 |
|
chscl.1 |
|
2 |
|
chscl.2 |
|
3 |
|
chscl.3 |
|
4 |
|
chscl.4 |
|
5 |
|
chscl.5 |
|
6 |
|
chscl.6 |
|
7 |
|
chscllem3.7 |
|
8 |
|
chscllem3.8 |
|
9 |
|
chscllem3.9 |
|
10 |
|
chscllem3.10 |
|
11 |
|
2fveq3 |
|
12 |
|
fvex |
|
13 |
11 6 12
|
fvmpt |
|
14 |
7 13
|
syl |
|
15 |
14
|
eqcomd |
|
16 |
|
chsh |
|
17 |
2 16
|
syl |
|
18 |
|
chsh |
|
19 |
1 18
|
syl |
|
20 |
|
shocsh |
|
21 |
19 20
|
syl |
|
22 |
|
shless |
|
23 |
17 21 19 3 22
|
syl31anc |
|
24 |
|
shscom |
|
25 |
19 17 24
|
syl2anc |
|
26 |
|
shscom |
|
27 |
19 21 26
|
syl2anc |
|
28 |
23 25 27
|
3sstr4d |
|
29 |
4 7
|
ffvelrnd |
|
30 |
28 29
|
sseldd |
|
31 |
|
pjpreeq |
|
32 |
1 30 31
|
syl2anc |
|
33 |
15 32
|
mpbid |
|
34 |
33
|
simprd |
|
35 |
19
|
adantr |
|
36 |
21
|
adantr |
|
37 |
|
ocin |
|
38 |
19 37
|
syl |
|
39 |
38
|
adantr |
|
40 |
8
|
adantr |
|
41 |
3
|
adantr |
|
42 |
9
|
adantr |
|
43 |
41 42
|
sseldd |
|
44 |
1 2 3 4 5 6
|
chscllem1 |
|
45 |
44 7
|
ffvelrnd |
|
46 |
45
|
adantr |
|
47 |
|
simprl |
|
48 |
10
|
adantr |
|
49 |
|
simprr |
|
50 |
48 49
|
eqtr3d |
|
51 |
35 36 39 40 43 46 47 50
|
shuni |
|
52 |
51
|
simpld |
|
53 |
34 52
|
rexlimddv |
|