Metamath Proof Explorer


Theorem chscllem3

Description: Lemma for chscl . (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses chscl.1 φ A C
chscl.2 φ B C
chscl.3 φ B A
chscl.4 φ H : A + B
chscl.5 φ H v u
chscl.6 F = n proj A H n
chscllem3.7 φ N
chscllem3.8 φ C A
chscllem3.9 φ D B
chscllem3.10 φ H N = C + D
Assertion chscllem3 φ C = F N

Proof

Step Hyp Ref Expression
1 chscl.1 φ A C
2 chscl.2 φ B C
3 chscl.3 φ B A
4 chscl.4 φ H : A + B
5 chscl.5 φ H v u
6 chscl.6 F = n proj A H n
7 chscllem3.7 φ N
8 chscllem3.8 φ C A
9 chscllem3.9 φ D B
10 chscllem3.10 φ H N = C + D
11 2fveq3 n = N proj A H n = proj A H N
12 fvex proj A H N V
13 11 6 12 fvmpt N F N = proj A H N
14 7 13 syl φ F N = proj A H N
15 14 eqcomd φ proj A H N = F N
16 chsh B C B S
17 2 16 syl φ B S
18 chsh A C A S
19 1 18 syl φ A S
20 shocsh A S A S
21 19 20 syl φ A S
22 shless B S A S A S B A B + A A + A
23 17 21 19 3 22 syl31anc φ B + A A + A
24 shscom A S B S A + B = B + A
25 19 17 24 syl2anc φ A + B = B + A
26 shscom A S A S A + A = A + A
27 19 21 26 syl2anc φ A + A = A + A
28 23 25 27 3sstr4d φ A + B A + A
29 4 7 ffvelrnd φ H N A + B
30 28 29 sseldd φ H N A + A
31 pjpreeq A C H N A + A proj A H N = F N F N A z A H N = F N + z
32 1 30 31 syl2anc φ proj A H N = F N F N A z A H N = F N + z
33 15 32 mpbid φ F N A z A H N = F N + z
34 33 simprd φ z A H N = F N + z
35 19 adantr φ z A H N = F N + z A S
36 21 adantr φ z A H N = F N + z A S
37 ocin A S A A = 0
38 19 37 syl φ A A = 0
39 38 adantr φ z A H N = F N + z A A = 0
40 8 adantr φ z A H N = F N + z C A
41 3 adantr φ z A H N = F N + z B A
42 9 adantr φ z A H N = F N + z D B
43 41 42 sseldd φ z A H N = F N + z D A
44 1 2 3 4 5 6 chscllem1 φ F : A
45 44 7 ffvelrnd φ F N A
46 45 adantr φ z A H N = F N + z F N A
47 simprl φ z A H N = F N + z z A
48 10 adantr φ z A H N = F N + z H N = C + D
49 simprr φ z A H N = F N + z H N = F N + z
50 48 49 eqtr3d φ z A H N = F N + z C + D = F N + z
51 35 36 39 40 43 46 47 50 shuni φ z A H N = F N + z C = F N D = z
52 51 simpld φ z A H N = F N + z C = F N
53 34 52 rexlimddv φ C = F N