| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chscl.1 |
|
| 2 |
|
chscl.2 |
|
| 3 |
|
chscl.3 |
|
| 4 |
|
chscl.4 |
|
| 5 |
|
chscl.5 |
|
| 6 |
|
chscl.6 |
|
| 7 |
|
chscllem3.7 |
|
| 8 |
|
chscllem3.8 |
|
| 9 |
|
chscllem3.9 |
|
| 10 |
|
chscllem3.10 |
|
| 11 |
|
2fveq3 |
|
| 12 |
|
fvex |
|
| 13 |
11 6 12
|
fvmpt |
|
| 14 |
7 13
|
syl |
|
| 15 |
14
|
eqcomd |
|
| 16 |
|
chsh |
|
| 17 |
2 16
|
syl |
|
| 18 |
|
chsh |
|
| 19 |
1 18
|
syl |
|
| 20 |
|
shocsh |
|
| 21 |
19 20
|
syl |
|
| 22 |
|
shless |
|
| 23 |
17 21 19 3 22
|
syl31anc |
|
| 24 |
|
shscom |
|
| 25 |
19 17 24
|
syl2anc |
|
| 26 |
|
shscom |
|
| 27 |
19 21 26
|
syl2anc |
|
| 28 |
23 25 27
|
3sstr4d |
|
| 29 |
4 7
|
ffvelcdmd |
|
| 30 |
28 29
|
sseldd |
|
| 31 |
|
pjpreeq |
|
| 32 |
1 30 31
|
syl2anc |
|
| 33 |
15 32
|
mpbid |
|
| 34 |
33
|
simprd |
|
| 35 |
19
|
adantr |
|
| 36 |
21
|
adantr |
|
| 37 |
|
ocin |
|
| 38 |
19 37
|
syl |
|
| 39 |
38
|
adantr |
|
| 40 |
8
|
adantr |
|
| 41 |
3
|
adantr |
|
| 42 |
9
|
adantr |
|
| 43 |
41 42
|
sseldd |
|
| 44 |
1 2 3 4 5 6
|
chscllem1 |
|
| 45 |
44 7
|
ffvelcdmd |
|
| 46 |
45
|
adantr |
|
| 47 |
|
simprl |
|
| 48 |
10
|
adantr |
|
| 49 |
|
simprr |
|
| 50 |
48 49
|
eqtr3d |
|
| 51 |
35 36 39 40 43 46 47 50
|
shuni |
|
| 52 |
51
|
simpld |
|
| 53 |
34 52
|
rexlimddv |
|