Step |
Hyp |
Ref |
Expression |
1 |
|
chscl.1 |
|
2 |
|
chscl.2 |
|
3 |
|
chscl.3 |
|
4 |
|
chscl.4 |
|
5 |
|
chscl.5 |
|
6 |
|
chscl.6 |
|
7 |
|
chscl.7 |
|
8 |
|
hlimf |
|
9 |
|
ffun |
|
10 |
8 9
|
ax-mp |
|
11 |
|
funbrfv |
|
12 |
10 5 11
|
mpsyl |
|
13 |
4
|
feqmptd |
|
14 |
4
|
ffvelrnda |
|
15 |
|
chsh |
|
16 |
1 15
|
syl |
|
17 |
|
chsh |
|
18 |
2 17
|
syl |
|
19 |
|
shsel |
|
20 |
16 18 19
|
syl2anc |
|
21 |
20
|
biimpa |
|
22 |
14 21
|
syldan |
|
23 |
|
simp3 |
|
24 |
|
simp1l |
|
25 |
24 1
|
syl |
|
26 |
24 2
|
syl |
|
27 |
24 3
|
syl |
|
28 |
24 4
|
syl |
|
29 |
24 5
|
syl |
|
30 |
|
simp1r |
|
31 |
|
simp2l |
|
32 |
|
simp2r |
|
33 |
25 26 27 28 29 6 30 31 32 23
|
chscllem3 |
|
34 |
|
chsscon2 |
|
35 |
2 1 34
|
syl2anc |
|
36 |
3 35
|
mpbid |
|
37 |
24 36
|
syl |
|
38 |
|
shscom |
|
39 |
16 18 38
|
syl2anc |
|
40 |
39
|
feq3d |
|
41 |
4 40
|
mpbid |
|
42 |
24 41
|
syl |
|
43 |
|
shss |
|
44 |
16 43
|
syl |
|
45 |
24 44
|
syl |
|
46 |
45 31
|
sseldd |
|
47 |
|
shss |
|
48 |
18 47
|
syl |
|
49 |
24 48
|
syl |
|
50 |
49 32
|
sseldd |
|
51 |
|
ax-hvcom |
|
52 |
46 50 51
|
syl2anc |
|
53 |
23 52
|
eqtrd |
|
54 |
26 25 37 42 29 7 30 32 31 53
|
chscllem3 |
|
55 |
33 54
|
oveq12d |
|
56 |
23 55
|
eqtrd |
|
57 |
56
|
3exp |
|
58 |
57
|
rexlimdvv |
|
59 |
22 58
|
mpd |
|
60 |
59
|
mpteq2dva |
|
61 |
13 60
|
eqtrd |
|
62 |
1 2 3 4 5 6
|
chscllem1 |
|
63 |
62 44
|
fssd |
|
64 |
2 1 36 41 5 7
|
chscllem1 |
|
65 |
64 48
|
fssd |
|
66 |
1 2 3 4 5 6
|
chscllem2 |
|
67 |
|
funfvbrb |
|
68 |
10 67
|
ax-mp |
|
69 |
66 68
|
sylib |
|
70 |
2 1 36 41 5 7
|
chscllem2 |
|
71 |
|
funfvbrb |
|
72 |
10 71
|
ax-mp |
|
73 |
70 72
|
sylib |
|
74 |
|
eqid |
|
75 |
63 65 69 73 74
|
hlimadd |
|
76 |
61 75
|
eqbrtrd |
|
77 |
|
funbrfv |
|
78 |
10 76 77
|
mpsyl |
|
79 |
12 78
|
eqtr3d |
|
80 |
|
fvex |
|
81 |
80
|
chlimi |
|
82 |
1 62 69 81
|
syl3anc |
|
83 |
|
fvex |
|
84 |
83
|
chlimi |
|
85 |
2 64 73 84
|
syl3anc |
|
86 |
|
shsva |
|
87 |
16 18 86
|
syl2anc |
|
88 |
82 85 87
|
mp2and |
|
89 |
79 88
|
eqeltrd |
|