Metamath Proof Explorer


Theorem chseli

Description: Membership in subspace sum. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 A C
chjcl.2 B C
Assertion chseli C A + B x A y B C = x + y

Proof

Step Hyp Ref Expression
1 ch0le.1 A C
2 chjcl.2 B C
3 1 chshii A S
4 2 chshii B S
5 3 4 shseli C A + B x A y B C = x + y