Metamath Proof Explorer


Theorem chslej

Description: Subspace sum is smaller than subspace join. Remark in Kalmbach p. 65. (Contributed by NM, 12-Jul-2004) (New usage is discouraged.)

Ref Expression
Assertion chslej A C B C A + B A B

Proof

Step Hyp Ref Expression
1 chsh A C A S
2 chsh B C B S
3 shslej A S B S A + B A B
4 1 2 3 syl2an A C B C A + B A B