Metamath Proof Explorer


Theorem chsscon1i

Description: Hilbert lattice contraposition law. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 A C
chjcl.2 B C
Assertion chsscon1i A B B A

Proof

Step Hyp Ref Expression
1 ch0le.1 A C
2 chjcl.2 B C
3 1 choccli A C
4 3 2 chsscon3i A B B A
5 1 pjococi A = A
6 5 sseq2i B A B A
7 4 6 bitri A B B A