Metamath Proof Explorer
Description: Hilbert lattice contraposition law. (Contributed by NM, 15-Oct-1999)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
ch0le.1 |
|
|
|
chjcl.2 |
|
|
Assertion |
chsscon2i |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ch0le.1 |
|
2 |
|
chjcl.2 |
|
3 |
1
|
chssii |
|
4 |
2
|
chssii |
|
5 |
|
occon3 |
|
6 |
3 4 5
|
mp2an |
|