Metamath Proof Explorer


Theorem chsscon2i

Description: Hilbert lattice contraposition law. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 A C
chjcl.2 B C
Assertion chsscon2i A B B A

Proof

Step Hyp Ref Expression
1 ch0le.1 A C
2 chjcl.2 B C
3 1 chssii A
4 2 chssii B
5 occon3 A B A B B A
6 3 4 5 mp2an A B B A