Metamath Proof Explorer


Theorem chsscon3

Description: Hilbert lattice contraposition law. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chsscon3 A C B C A B B A

Proof

Step Hyp Ref Expression
1 sseq1 A = if A C A A B if A C A B
2 fveq2 A = if A C A A = if A C A
3 2 sseq2d A = if A C A B A B if A C A
4 1 3 bibi12d A = if A C A A B B A if A C A B B if A C A
5 sseq2 B = if B C B if A C A B if A C A if B C B
6 fveq2 B = if B C B B = if B C B
7 6 sseq1d B = if B C B B if A C A if B C B if A C A
8 5 7 bibi12d B = if B C B if A C A B B if A C A if A C A if B C B if B C B if A C A
9 ifchhv if A C A C
10 ifchhv if B C B C
11 9 10 chsscon3i if A C A if B C B if B C B if A C A
12 4 8 11 dedth2h A C B C A B B A