Metamath Proof Explorer


Theorem chsscon3i

Description: Hilbert lattice contraposition law. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 A C
chjcl.2 B C
Assertion chsscon3i A B B A

Proof

Step Hyp Ref Expression
1 ch0le.1 A C
2 chjcl.2 B C
3 1 chssii A
4 2 chssii B
5 occon A B A B B A
6 3 4 5 mp2an A B B A
7 2 choccli B C
8 7 chssii B
9 1 choccli A C
10 9 chssii A
11 occon B A B A A B
12 8 10 11 mp2an B A A B
13 1 pjococi A = A
14 2 pjococi B = B
15 12 13 14 3sstr3g B A A B
16 6 15 impbii A B B A