Metamath Proof Explorer


Theorem chsupss

Description: Subset relation for supremum of subset of CH . (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)

Ref Expression
Assertion chsupss A C B C A B A B

Proof

Step Hyp Ref Expression
1 chsspwh C 𝒫
2 sstr2 A C C 𝒫 A 𝒫
3 1 2 mpi A C A 𝒫
4 sstr2 B C C 𝒫 B 𝒫
5 1 4 mpi B C B 𝒫
6 hsupss A 𝒫 B 𝒫 A B A B
7 3 5 6 syl2an A C B C A B A B