Metamath Proof Explorer


Theorem cht1

Description: The Chebyshev function at 1 . (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion cht1 θ 1 = 0

Proof

Step Hyp Ref Expression
1 1re 1
2 chtval 1 θ 1 = p 0 1 log p
3 1 2 ax-mp θ 1 = p 0 1 log p
4 ppisval 1 0 1 = 2 1
5 1 4 ax-mp 0 1 = 2 1
6 1z 1
7 flid 1 1 = 1
8 6 7 ax-mp 1 = 1
9 8 oveq2i 2 1 = 2 1
10 1lt2 1 < 2
11 2z 2
12 fzn 2 1 1 < 2 2 1 =
13 11 6 12 mp2an 1 < 2 2 1 =
14 10 13 mpbi 2 1 =
15 9 14 eqtri 2 1 =
16 15 ineq1i 2 1 =
17 0in =
18 5 16 17 3eqtri 0 1 =
19 18 sumeq1i p 0 1 log p = p log p
20 sum0 p log p = 0
21 3 19 20 3eqtri θ 1 = 0