Metamath Proof Explorer


Theorem cht2

Description: The Chebyshev function at 2 . (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion cht2 θ 2 = log 2

Proof

Step Hyp Ref Expression
1 df-2 2 = 1 + 1
2 1 fveq2i θ 2 = θ 1 + 1
3 1z 1
4 2prm 2
5 1 4 eqeltrri 1 + 1
6 chtprm 1 1 + 1 θ 1 + 1 = θ 1 + log 1 + 1
7 3 5 6 mp2an θ 1 + 1 = θ 1 + log 1 + 1
8 cht1 θ 1 = 0
9 8 eqcomi 0 = θ 1
10 1 fveq2i log 2 = log 1 + 1
11 9 10 oveq12i 0 + log 2 = θ 1 + log 1 + 1
12 2rp 2 +
13 relogcl 2 + log 2
14 12 13 ax-mp log 2
15 14 recni log 2
16 15 addid2i 0 + log 2 = log 2
17 11 16 eqtr3i θ 1 + log 1 + 1 = log 2
18 2 7 17 3eqtri θ 2 = log 2