Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Number-theoretical functions
cht2
Next ⟩
cht3
Metamath Proof Explorer
Ascii
Unicode
Theorem
cht2
Description:
The Chebyshev function at
2
.
(Contributed by
Mario Carneiro
, 22-Sep-2014)
Ref
Expression
Assertion
cht2
⊢
θ
⁡
2
=
log
⁡
2
Proof
Step
Hyp
Ref
Expression
1
df-2
⊢
2
=
1
+
1
2
1
fveq2i
⊢
θ
⁡
2
=
θ
⁡
1
+
1
3
1z
⊢
1
∈
ℤ
4
2prm
⊢
2
∈
ℙ
5
1
4
eqeltrri
⊢
1
+
1
∈
ℙ
6
chtprm
⊢
1
∈
ℤ
∧
1
+
1
∈
ℙ
→
θ
⁡
1
+
1
=
θ
⁡
1
+
log
⁡
1
+
1
7
3
5
6
mp2an
⊢
θ
⁡
1
+
1
=
θ
⁡
1
+
log
⁡
1
+
1
8
cht1
⊢
θ
⁡
1
=
0
9
8
eqcomi
⊢
0
=
θ
⁡
1
10
1
fveq2i
⊢
log
⁡
2
=
log
⁡
1
+
1
11
9
10
oveq12i
⊢
0
+
log
⁡
2
=
θ
⁡
1
+
log
⁡
1
+
1
12
2rp
⊢
2
∈
ℝ
+
13
relogcl
⊢
2
∈
ℝ
+
→
log
⁡
2
∈
ℝ
14
12
13
ax-mp
⊢
log
⁡
2
∈
ℝ
15
14
recni
⊢
log
⁡
2
∈
ℂ
16
15
addid2i
⊢
0
+
log
⁡
2
=
log
⁡
2
17
11
16
eqtr3i
⊢
θ
⁡
1
+
log
⁡
1
+
1
=
log
⁡
2
18
2
7
17
3eqtri
⊢
θ
⁡
2
=
log
⁡
2