Metamath Proof Explorer


Theorem cht3

Description: The Chebyshev function at 3 . (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion cht3 θ 3 = log 6

Proof

Step Hyp Ref Expression
1 df-3 3 = 2 + 1
2 1 fveq2i θ 3 = θ 2 + 1
3 2z 2
4 3prm 3
5 1 4 eqeltrri 2 + 1
6 chtprm 2 2 + 1 θ 2 + 1 = θ 2 + log 2 + 1
7 3 5 6 mp2an θ 2 + 1 = θ 2 + log 2 + 1
8 2rp 2 +
9 3rp 3 +
10 relogmul 2 + 3 + log 2 3 = log 2 + log 3
11 8 9 10 mp2an log 2 3 = log 2 + log 3
12 3cn 3
13 2cn 2
14 3t2e6 3 2 = 6
15 12 13 14 mulcomli 2 3 = 6
16 15 fveq2i log 2 3 = log 6
17 cht2 θ 2 = log 2
18 17 eqcomi log 2 = θ 2
19 1 fveq2i log 3 = log 2 + 1
20 18 19 oveq12i log 2 + log 3 = θ 2 + log 2 + 1
21 11 16 20 3eqtr3ri θ 2 + log 2 + 1 = log 6
22 2 7 21 3eqtri θ 3 = log 6