Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelre |
|
2 |
|
chtval |
|
3 |
1 2
|
syl |
|
4 |
|
eluzel2 |
|
5 |
|
2z |
|
6 |
|
ifcl |
|
7 |
4 5 6
|
sylancl |
|
8 |
5
|
a1i |
|
9 |
4
|
zred |
|
10 |
|
2re |
|
11 |
|
min2 |
|
12 |
9 10 11
|
sylancl |
|
13 |
|
eluz2 |
|
14 |
7 8 12 13
|
syl3anbrc |
|
15 |
|
ppisval2 |
|
16 |
1 14 15
|
syl2anc |
|
17 |
|
eluzelz |
|
18 |
|
flid |
|
19 |
17 18
|
syl |
|
20 |
19
|
oveq2d |
|
21 |
20
|
ineq1d |
|
22 |
16 21
|
eqtrd |
|
23 |
22
|
sumeq1d |
|
24 |
9
|
ltp1d |
|
25 |
|
fzdisj |
|
26 |
24 25
|
syl |
|
27 |
26
|
ineq1d |
|
28 |
|
inindir |
|
29 |
|
0in |
|
30 |
27 28 29
|
3eqtr3g |
|
31 |
|
min1 |
|
32 |
9 10 31
|
sylancl |
|
33 |
|
eluz2 |
|
34 |
7 4 32 33
|
syl3anbrc |
|
35 |
|
id |
|
36 |
|
elfzuzb |
|
37 |
34 35 36
|
sylanbrc |
|
38 |
|
fzsplit |
|
39 |
37 38
|
syl |
|
40 |
39
|
ineq1d |
|
41 |
|
indir |
|
42 |
40 41
|
eqtrdi |
|
43 |
|
fzfid |
|
44 |
|
inss1 |
|
45 |
|
ssfi |
|
46 |
43 44 45
|
sylancl |
|
47 |
|
simpr |
|
48 |
47
|
elin2d |
|
49 |
|
prmnn |
|
50 |
48 49
|
syl |
|
51 |
50
|
nnrpd |
|
52 |
51
|
relogcld |
|
53 |
52
|
recnd |
|
54 |
30 42 46 53
|
fsumsplit |
|
55 |
23 54
|
eqtrd |
|
56 |
3 55
|
eqtrd |
|
57 |
|
chtval |
|
58 |
9 57
|
syl |
|
59 |
|
ppisval2 |
|
60 |
9 14 59
|
syl2anc |
|
61 |
|
flid |
|
62 |
4 61
|
syl |
|
63 |
62
|
oveq2d |
|
64 |
63
|
ineq1d |
|
65 |
60 64
|
eqtrd |
|
66 |
65
|
sumeq1d |
|
67 |
58 66
|
eqtrd |
|
68 |
56 67
|
oveq12d |
|
69 |
|
fzfi |
|
70 |
|
inss1 |
|
71 |
|
ssfi |
|
72 |
69 70 71
|
mp2an |
|
73 |
72
|
a1i |
|
74 |
|
ssun1 |
|
75 |
74 42
|
sseqtrrid |
|
76 |
75
|
sselda |
|
77 |
76 53
|
syldan |
|
78 |
73 77
|
fsumcl |
|
79 |
|
fzfi |
|
80 |
|
inss1 |
|
81 |
|
ssfi |
|
82 |
79 80 81
|
mp2an |
|
83 |
82
|
a1i |
|
84 |
|
ssun2 |
|
85 |
84 42
|
sseqtrrid |
|
86 |
85
|
sselda |
|
87 |
86 53
|
syldan |
|
88 |
83 87
|
fsumcl |
|
89 |
78 88
|
pncan2d |
|
90 |
68 89
|
eqtrd |
|