Metamath Proof Explorer


Theorem chteq0

Description: The first Chebyshev function is zero iff its argument is less than 2 . (Contributed by Mario Carneiro, 9-Apr-2016)

Ref Expression
Assertion chteq0 A θ A = 0 A < 2

Proof

Step Hyp Ref Expression
1 2re 2
2 lenlt 2 A 2 A ¬ A < 2
3 1 2 mpan A 2 A ¬ A < 2
4 chtrpcl A 2 A θ A +
5 4 rpne0d A 2 A θ A 0
6 5 ex A 2 A θ A 0
7 3 6 sylbird A ¬ A < 2 θ A 0
8 7 necon4bd A θ A = 0 A < 2
9 chtlepsi A θ A ψ A
10 9 adantr A A < 2 θ A ψ A
11 chpeq0 A ψ A = 0 A < 2
12 11 biimpar A A < 2 ψ A = 0
13 10 12 breqtrd A A < 2 θ A 0
14 chtge0 A 0 θ A
15 14 adantr A A < 2 0 θ A
16 chtcl A θ A
17 16 adantr A A < 2 θ A
18 0re 0
19 letri3 θ A 0 θ A = 0 θ A 0 0 θ A
20 17 18 19 sylancl A A < 2 θ A = 0 θ A 0 0 θ A
21 13 15 20 mpbir2and A A < 2 θ A = 0
22 21 ex A A < 2 θ A = 0
23 8 22 impbid A θ A = 0 A < 2