Metamath Proof Explorer


Theorem chtf

Description: Domain and range of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion chtf θ :

Proof

Step Hyp Ref Expression
1 df-cht θ = x p 0 x log p
2 ppifi x 0 x Fin
3 simpr x p 0 x p 0 x
4 3 elin2d x p 0 x p
5 prmnn p p
6 4 5 syl x p 0 x p
7 6 nnrpd x p 0 x p +
8 7 relogcld x p 0 x log p
9 2 8 fsumrecl x p 0 x log p
10 1 9 fmpti θ :