Metamath Proof Explorer


Theorem chtfl

Description: The Chebyshev function does not change off the integers. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion chtfl A θ A = θ A

Proof

Step Hyp Ref Expression
1 flidm A A = A
2 1 oveq2d A 2 A = 2 A
3 2 ineq1d A 2 A = 2 A
4 reflcl A A
5 ppisval A 0 A = 2 A
6 4 5 syl A 0 A = 2 A
7 ppisval A 0 A = 2 A
8 3 6 7 3eqtr4d A 0 A = 0 A
9 8 sumeq1d A p 0 A log p = p 0 A log p
10 chtval A θ A = p 0 A log p
11 4 10 syl A θ A = p 0 A log p
12 chtval A θ A = p 0 A log p
13 9 11 12 3eqtr4d A θ A = θ A