Metamath Proof Explorer


Theorem chtge0

Description: The Chebyshev function is always positive. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion chtge0 A 0 θ A

Proof

Step Hyp Ref Expression
1 ppifi A 0 A Fin
2 simpr A p 0 A p 0 A
3 2 elin2d A p 0 A p
4 prmuz2 p p 2
5 3 4 syl A p 0 A p 2
6 eluz2b2 p 2 p 1 < p
7 5 6 sylib A p 0 A p 1 < p
8 7 simpld A p 0 A p
9 8 nnrpd A p 0 A p +
10 9 relogcld A p 0 A log p
11 8 nnred A p 0 A p
12 7 simprd A p 0 A 1 < p
13 11 12 rplogcld A p 0 A log p +
14 13 rpge0d A p 0 A 0 log p
15 1 10 14 fsumge0 A 0 p 0 A log p
16 chtval A θ A = p 0 A log p
17 15 16 breqtrrd A 0 θ A