Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Number-theoretical functions
chtge0
Next ⟩
vmaval
Metamath Proof Explorer
Ascii
Unicode
Theorem
chtge0
Description:
The Chebyshev function is always positive.
(Contributed by
Mario Carneiro
, 15-Sep-2014)
Ref
Expression
Assertion
chtge0
⊢
A
∈
ℝ
→
0
≤
θ
⁡
A
Proof
Step
Hyp
Ref
Expression
1
ppifi
⊢
A
∈
ℝ
→
0
A
∩
ℙ
∈
Fin
2
simpr
⊢
A
∈
ℝ
∧
p
∈
0
A
∩
ℙ
→
p
∈
0
A
∩
ℙ
3
2
elin2d
⊢
A
∈
ℝ
∧
p
∈
0
A
∩
ℙ
→
p
∈
ℙ
4
prmuz2
⊢
p
∈
ℙ
→
p
∈
ℤ
≥
2
5
3
4
syl
⊢
A
∈
ℝ
∧
p
∈
0
A
∩
ℙ
→
p
∈
ℤ
≥
2
6
eluz2b2
⊢
p
∈
ℤ
≥
2
↔
p
∈
ℕ
∧
1
<
p
7
5
6
sylib
⊢
A
∈
ℝ
∧
p
∈
0
A
∩
ℙ
→
p
∈
ℕ
∧
1
<
p
8
7
simpld
⊢
A
∈
ℝ
∧
p
∈
0
A
∩
ℙ
→
p
∈
ℕ
9
8
nnrpd
⊢
A
∈
ℝ
∧
p
∈
0
A
∩
ℙ
→
p
∈
ℝ
+
10
9
relogcld
⊢
A
∈
ℝ
∧
p
∈
0
A
∩
ℙ
→
log
⁡
p
∈
ℝ
11
8
nnred
⊢
A
∈
ℝ
∧
p
∈
0
A
∩
ℙ
→
p
∈
ℝ
12
7
simprd
⊢
A
∈
ℝ
∧
p
∈
0
A
∩
ℙ
→
1
<
p
13
11
12
rplogcld
⊢
A
∈
ℝ
∧
p
∈
0
A
∩
ℙ
→
log
⁡
p
∈
ℝ
+
14
13
rpge0d
⊢
A
∈
ℝ
∧
p
∈
0
A
∩
ℙ
→
0
≤
log
⁡
p
15
1
10
14
fsumge0
⊢
A
∈
ℝ
→
0
≤
∑
p
∈
0
A
∩
ℙ
log
⁡
p
16
chtval
⊢
A
∈
ℝ
→
θ
⁡
A
=
∑
p
∈
0
A
∩
ℙ
log
⁡
p
17
15
16
breqtrrd
⊢
A
∈
ℝ
→
0
≤
θ
⁡
A