Metamath Proof Explorer


Theorem chtleppi

Description: Upper bound on the theta function. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion chtleppi A + θ A π _ A log A

Proof

Step Hyp Ref Expression
1 rpre A + A
2 ppifi A 0 A Fin
3 1 2 syl A + 0 A Fin
4 simpr A + p 0 A p 0 A
5 4 elin2d A + p 0 A p
6 prmnn p p
7 5 6 syl A + p 0 A p
8 7 nnrpd A + p 0 A p +
9 8 relogcld A + p 0 A log p
10 relogcl A + log A
11 10 adantr A + p 0 A log A
12 4 elin1d A + p 0 A p 0 A
13 0re 0
14 elicc2 0 A p 0 A p 0 p p A
15 13 1 14 sylancr A + p 0 A p 0 p p A
16 15 biimpa A + p 0 A p 0 p p A
17 12 16 syldan A + p 0 A p 0 p p A
18 17 simp3d A + p 0 A p A
19 8 reeflogd A + p 0 A e log p = p
20 reeflog A + e log A = A
21 20 adantr A + p 0 A e log A = A
22 18 19 21 3brtr4d A + p 0 A e log p e log A
23 efle log p log A log p log A e log p e log A
24 9 11 23 syl2anc A + p 0 A log p log A e log p e log A
25 22 24 mpbird A + p 0 A log p log A
26 3 9 11 25 fsumle A + p 0 A log p p 0 A log A
27 chtval A θ A = p 0 A log p
28 1 27 syl A + θ A = p 0 A log p
29 ppival A π _ A = 0 A
30 1 29 syl A + π _ A = 0 A
31 30 oveq1d A + π _ A log A = 0 A log A
32 10 recnd A + log A
33 fsumconst 0 A Fin log A p 0 A log A = 0 A log A
34 3 32 33 syl2anc A + p 0 A log A = 0 A log A
35 31 34 eqtr4d A + π _ A log A = p 0 A log A
36 26 28 35 3brtr4d A + θ A π _ A log A