Metamath Proof Explorer


Theorem chtlepsi

Description: The first Chebyshev function is less than the second. (Contributed by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion chtlepsi A θ A ψ A

Proof

Step Hyp Ref Expression
1 fzfid A 1 A Fin
2 elfznn n 1 A n
3 2 adantl A n 1 A n
4 vmacl n Λ n
5 3 4 syl A n 1 A Λ n
6 vmage0 n 0 Λ n
7 3 6 syl A n 1 A 0 Λ n
8 ppisval A 0 A = 2 A
9 inss1 2 A 2 A
10 2eluzge1 2 1
11 fzss1 2 1 2 A 1 A
12 10 11 mp1i A 2 A 1 A
13 9 12 sstrid A 2 A 1 A
14 8 13 eqsstrd A 0 A 1 A
15 1 5 7 14 fsumless A n 0 A Λ n n = 1 A Λ n
16 chtval A θ A = n 0 A log n
17 simpr A n 0 A n 0 A
18 17 elin2d A n 0 A n
19 vmaprm n Λ n = log n
20 18 19 syl A n 0 A Λ n = log n
21 20 sumeq2dv A n 0 A Λ n = n 0 A log n
22 16 21 eqtr4d A θ A = n 0 A Λ n
23 chpval A ψ A = n = 1 A Λ n
24 15 22 23 3brtr4d A θ A ψ A