Step |
Hyp |
Ref |
Expression |
1 |
|
simprr |
|
2 |
1
|
elin2d |
|
3 |
|
simprl |
|
4 |
|
nelne2 |
|
5 |
2 3 4
|
syl2anc |
|
6 |
|
velsn |
|
7 |
6
|
necon3bbii |
|
8 |
5 7
|
sylibr |
|
9 |
1
|
elin1d |
|
10 |
|
2z |
|
11 |
|
zcn |
|
12 |
11
|
adantr |
|
13 |
|
ax-1cn |
|
14 |
|
pncan |
|
15 |
12 13 14
|
sylancl |
|
16 |
|
elfzuz2 |
|
17 |
|
uz2m1nn |
|
18 |
9 16 17
|
3syl |
|
19 |
15 18
|
eqeltrrd |
|
20 |
|
nnuz |
|
21 |
|
2m1e1 |
|
22 |
21
|
fveq2i |
|
23 |
20 22
|
eqtr4i |
|
24 |
19 23
|
eleqtrdi |
|
25 |
|
fzsuc2 |
|
26 |
10 24 25
|
sylancr |
|
27 |
9 26
|
eleqtrd |
|
28 |
|
elun |
|
29 |
27 28
|
sylib |
|
30 |
29
|
ord |
|
31 |
8 30
|
mt3d |
|
32 |
31 2
|
elind |
|
33 |
32
|
expr |
|
34 |
33
|
ssrdv |
|
35 |
|
uzid |
|
36 |
35
|
adantr |
|
37 |
|
peano2uz |
|
38 |
|
fzss2 |
|
39 |
|
ssrin |
|
40 |
36 37 38 39
|
4syl |
|
41 |
34 40
|
eqssd |
|
42 |
|
peano2z |
|
43 |
42
|
adantr |
|
44 |
|
flid |
|
45 |
43 44
|
syl |
|
46 |
45
|
oveq2d |
|
47 |
46
|
ineq1d |
|
48 |
|
flid |
|
49 |
48
|
adantr |
|
50 |
49
|
oveq2d |
|
51 |
50
|
ineq1d |
|
52 |
41 47 51
|
3eqtr4d |
|
53 |
|
zre |
|
54 |
53
|
adantr |
|
55 |
|
peano2re |
|
56 |
|
ppisval |
|
57 |
54 55 56
|
3syl |
|
58 |
|
ppisval |
|
59 |
54 58
|
syl |
|
60 |
52 57 59
|
3eqtr4d |
|
61 |
60
|
sumeq1d |
|
62 |
|
chtval |
|
63 |
54 55 62
|
3syl |
|
64 |
|
chtval |
|
65 |
54 64
|
syl |
|
66 |
61 63 65
|
3eqtr4d |
|