Metamath Proof Explorer


Theorem chtnprm

Description: The Chebyshev function at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014)

Ref Expression
Assertion chtnprm A ¬ A + 1 θ A + 1 = θ A

Proof

Step Hyp Ref Expression
1 simprr A ¬ A + 1 x 2 A + 1 x 2 A + 1
2 1 elin2d A ¬ A + 1 x 2 A + 1 x
3 simprl A ¬ A + 1 x 2 A + 1 ¬ A + 1
4 nelne2 x ¬ A + 1 x A + 1
5 2 3 4 syl2anc A ¬ A + 1 x 2 A + 1 x A + 1
6 velsn x A + 1 x = A + 1
7 6 necon3bbii ¬ x A + 1 x A + 1
8 5 7 sylibr A ¬ A + 1 x 2 A + 1 ¬ x A + 1
9 1 elin1d A ¬ A + 1 x 2 A + 1 x 2 A + 1
10 2z 2
11 zcn A A
12 11 adantr A ¬ A + 1 x 2 A + 1 A
13 ax-1cn 1
14 pncan A 1 A + 1 - 1 = A
15 12 13 14 sylancl A ¬ A + 1 x 2 A + 1 A + 1 - 1 = A
16 elfzuz2 x 2 A + 1 A + 1 2
17 uz2m1nn A + 1 2 A + 1 - 1
18 9 16 17 3syl A ¬ A + 1 x 2 A + 1 A + 1 - 1
19 15 18 eqeltrrd A ¬ A + 1 x 2 A + 1 A
20 nnuz = 1
21 2m1e1 2 1 = 1
22 21 fveq2i 2 1 = 1
23 20 22 eqtr4i = 2 1
24 19 23 eleqtrdi A ¬ A + 1 x 2 A + 1 A 2 1
25 fzsuc2 2 A 2 1 2 A + 1 = 2 A A + 1
26 10 24 25 sylancr A ¬ A + 1 x 2 A + 1 2 A + 1 = 2 A A + 1
27 9 26 eleqtrd A ¬ A + 1 x 2 A + 1 x 2 A A + 1
28 elun x 2 A A + 1 x 2 A x A + 1
29 27 28 sylib A ¬ A + 1 x 2 A + 1 x 2 A x A + 1
30 29 ord A ¬ A + 1 x 2 A + 1 ¬ x 2 A x A + 1
31 8 30 mt3d A ¬ A + 1 x 2 A + 1 x 2 A
32 31 2 elind A ¬ A + 1 x 2 A + 1 x 2 A
33 32 expr A ¬ A + 1 x 2 A + 1 x 2 A
34 33 ssrdv A ¬ A + 1 2 A + 1 2 A
35 uzid A A A
36 35 adantr A ¬ A + 1 A A
37 peano2uz A A A + 1 A
38 fzss2 A + 1 A 2 A 2 A + 1
39 ssrin 2 A 2 A + 1 2 A 2 A + 1
40 36 37 38 39 4syl A ¬ A + 1 2 A 2 A + 1
41 34 40 eqssd A ¬ A + 1 2 A + 1 = 2 A
42 peano2z A A + 1
43 42 adantr A ¬ A + 1 A + 1
44 flid A + 1 A + 1 = A + 1
45 43 44 syl A ¬ A + 1 A + 1 = A + 1
46 45 oveq2d A ¬ A + 1 2 A + 1 = 2 A + 1
47 46 ineq1d A ¬ A + 1 2 A + 1 = 2 A + 1
48 flid A A = A
49 48 adantr A ¬ A + 1 A = A
50 49 oveq2d A ¬ A + 1 2 A = 2 A
51 50 ineq1d A ¬ A + 1 2 A = 2 A
52 41 47 51 3eqtr4d A ¬ A + 1 2 A + 1 = 2 A
53 zre A A
54 53 adantr A ¬ A + 1 A
55 peano2re A A + 1
56 ppisval A + 1 0 A + 1 = 2 A + 1
57 54 55 56 3syl A ¬ A + 1 0 A + 1 = 2 A + 1
58 ppisval A 0 A = 2 A
59 54 58 syl A ¬ A + 1 0 A = 2 A
60 52 57 59 3eqtr4d A ¬ A + 1 0 A + 1 = 0 A
61 60 sumeq1d A ¬ A + 1 p 0 A + 1 log p = p 0 A log p
62 chtval A + 1 θ A + 1 = p 0 A + 1 log p
63 54 55 62 3syl A ¬ A + 1 θ A + 1 = p 0 A + 1 log p
64 chtval A θ A = p 0 A log p
65 54 64 syl A ¬ A + 1 θ A = p 0 A log p
66 61 63 65 3eqtr4d A ¬ A + 1 θ A + 1 = θ A