Metamath Proof Explorer


Theorem chto1lb

Description: The theta function is lower bounded by a linear term. Corollary of chebbnd1 . (Contributed by Mario Carneiro, 8-Apr-2016)

Ref Expression
Assertion chto1lb x 2 +∞ x θ x 𝑂1

Proof

Step Hyp Ref Expression
1 ovexd 2 +∞ V
2 2re 2
3 elicopnf 2 x 2 +∞ x 2 x
4 2 3 ax-mp x 2 +∞ x 2 x
5 4 biimpi x 2 +∞ x 2 x
6 5 simpld x 2 +∞ x
7 0red x 2 +∞ 0
8 2 a1i x 2 +∞ 2
9 2pos 0 < 2
10 9 a1i x 2 +∞ 0 < 2
11 5 simprd x 2 +∞ 2 x
12 7 8 6 10 11 ltletrd x 2 +∞ 0 < x
13 6 12 elrpd x 2 +∞ x +
14 ppinncl x 2 x π _ x
15 14 nnrpd x 2 x π _ x +
16 5 15 syl x 2 +∞ π _ x +
17 1red x 2 +∞ 1
18 1lt2 1 < 2
19 18 a1i x 2 +∞ 1 < 2
20 17 8 6 19 11 ltletrd x 2 +∞ 1 < x
21 6 20 rplogcld x 2 +∞ log x +
22 16 21 rpmulcld x 2 +∞ π _ x log x +
23 13 22 rpdivcld x 2 +∞ x π _ x log x +
24 23 rpcnd x 2 +∞ x π _ x log x
25 24 adantl x 2 +∞ x π _ x log x
26 chtrpcl x 2 x θ x +
27 5 26 syl x 2 +∞ θ x +
28 22 27 rpdivcld x 2 +∞ π _ x log x θ x +
29 28 rpcnd x 2 +∞ π _ x log x θ x
30 29 adantl x 2 +∞ π _ x log x θ x
31 6 recnd x 2 +∞ x
32 21 rpcnd x 2 +∞ log x
33 16 rpcnd x 2 +∞ π _ x
34 21 rpne0d x 2 +∞ log x 0
35 16 rpne0d x 2 +∞ π _ x 0
36 31 32 33 34 35 divdiv1d x 2 +∞ x log x π _ x = x log x π _ x
37 32 33 mulcomd x 2 +∞ log x π _ x = π _ x log x
38 37 oveq2d x 2 +∞ x log x π _ x = x π _ x log x
39 36 38 eqtrd x 2 +∞ x log x π _ x = x π _ x log x
40 39 mpteq2ia x 2 +∞ x log x π _ x = x 2 +∞ x π _ x log x
41 40 a1i x 2 +∞ x log x π _ x = x 2 +∞ x π _ x log x
42 27 rpcnd x 2 +∞ θ x
43 22 rpcnd x 2 +∞ π _ x log x
44 27 rpne0d x 2 +∞ θ x 0
45 22 rpne0d x 2 +∞ π _ x log x 0
46 42 43 44 45 recdivd x 2 +∞ 1 θ x π _ x log x = π _ x log x θ x
47 46 mpteq2ia x 2 +∞ 1 θ x π _ x log x = x 2 +∞ π _ x log x θ x
48 47 a1i x 2 +∞ 1 θ x π _ x log x = x 2 +∞ π _ x log x θ x
49 1 25 30 41 48 offval2 x 2 +∞ x log x π _ x × f x 2 +∞ 1 θ x π _ x log x = x 2 +∞ x π _ x log x π _ x log x θ x
50 31 43 42 45 44 dmdcan2d x 2 +∞ x π _ x log x π _ x log x θ x = x θ x
51 50 mpteq2ia x 2 +∞ x π _ x log x π _ x log x θ x = x 2 +∞ x θ x
52 49 51 eqtrdi x 2 +∞ x log x π _ x × f x 2 +∞ 1 θ x π _ x log x = x 2 +∞ x θ x
53 chebbnd1 x 2 +∞ x log x π _ x 𝑂1
54 ax-1cn 1
55 54 a1i x 2 +∞ 1
56 27 22 rpdivcld x 2 +∞ θ x π _ x log x +
57 56 adantl x 2 +∞ θ x π _ x log x +
58 57 rpcnd x 2 +∞ θ x π _ x log x
59 6 ssriv 2 +∞
60 rlimconst 2 +∞ 1 x 2 +∞ 1 1
61 59 54 60 mp2an x 2 +∞ 1 1
62 61 a1i x 2 +∞ 1 1
63 chtppilim x 2 +∞ θ x π _ x log x 1
64 63 a1i x 2 +∞ θ x π _ x log x 1
65 ax-1ne0 1 0
66 65 a1i 1 0
67 56 rpne0d x 2 +∞ θ x π _ x log x 0
68 67 adantl x 2 +∞ θ x π _ x log x 0
69 55 58 62 64 66 68 rlimdiv x 2 +∞ 1 θ x π _ x log x 1 1
70 rlimo1 x 2 +∞ 1 θ x π _ x log x 1 1 x 2 +∞ 1 θ x π _ x log x 𝑂1
71 69 70 syl x 2 +∞ 1 θ x π _ x log x 𝑂1
72 o1mul x 2 +∞ x log x π _ x 𝑂1 x 2 +∞ 1 θ x π _ x log x 𝑂1 x 2 +∞ x log x π _ x × f x 2 +∞ 1 θ x π _ x log x 𝑂1
73 53 71 72 sylancr x 2 +∞ x log x π _ x × f x 2 +∞ 1 θ x π _ x log x 𝑂1
74 52 73 eqeltrrd x 2 +∞ x θ x 𝑂1
75 74 mptru x 2 +∞ x θ x 𝑂1