Metamath Proof Explorer


Theorem chto1ub

Description: The theta function is upper bounded by a linear term. Corollary of chtub . (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion chto1ub x + θ x x 𝑂1

Proof

Step Hyp Ref Expression
1 rpssre +
2 1 a1i +
3 rpre x + x
4 chtcl x θ x
5 3 4 syl x + θ x
6 rerpdivcl θ x x + θ x x
7 5 6 mpancom x + θ x x
8 7 recnd x + θ x x
9 8 adantl x + θ x x
10 3re 3
11 10 a1i 3
12 2rp 2 +
13 relogcl 2 + log 2
14 12 13 ax-mp log 2
15 2re 2
16 14 15 remulcli log 2 2
17 16 a1i log 2 2
18 chtge0 x 0 θ x
19 3 18 syl x + 0 θ x
20 rpregt0 x + x 0 < x
21 divge0 θ x 0 θ x x 0 < x 0 θ x x
22 5 19 20 21 syl21anc x + 0 θ x x
23 7 22 absidd x + θ x x = θ x x
24 23 adantr x + 3 x θ x x = θ x x
25 7 adantr x + 3 x θ x x
26 16 a1i x + 3 x log 2 2
27 5 adantr x + 3 x θ x
28 3 adantr x + 3 x x
29 remulcl 2 x 2 x
30 15 28 29 sylancr x + 3 x 2 x
31 resubcl 2 x 3 2 x 3
32 30 10 31 sylancl x + 3 x 2 x 3
33 remulcl log 2 2 x 3 log 2 2 x 3
34 14 32 33 sylancr x + 3 x log 2 2 x 3
35 remulcl log 2 2 x log 2 2 x
36 14 30 35 sylancr x + 3 x log 2 2 x
37 15 a1i x + 3 x 2
38 10 a1i x + 3 x 3
39 2lt3 2 < 3
40 39 a1i x + 3 x 2 < 3
41 simpr x + 3 x 3 x
42 37 38 28 40 41 ltletrd x + 3 x 2 < x
43 chtub x 2 < x θ x < log 2 2 x 3
44 28 42 43 syl2anc x + 3 x θ x < log 2 2 x 3
45 3rp 3 +
46 ltsubrp 2 x 3 + 2 x 3 < 2 x
47 30 45 46 sylancl x + 3 x 2 x 3 < 2 x
48 1lt2 1 < 2
49 rplogcl 2 1 < 2 log 2 +
50 15 48 49 mp2an log 2 +
51 elrp log 2 + log 2 0 < log 2
52 50 51 mpbi log 2 0 < log 2
53 52 a1i x + 3 x log 2 0 < log 2
54 ltmul2 2 x 3 2 x log 2 0 < log 2 2 x 3 < 2 x log 2 2 x 3 < log 2 2 x
55 32 30 53 54 syl3anc x + 3 x 2 x 3 < 2 x log 2 2 x 3 < log 2 2 x
56 47 55 mpbid x + 3 x log 2 2 x 3 < log 2 2 x
57 27 34 36 44 56 lttrd x + 3 x θ x < log 2 2 x
58 14 recni log 2
59 58 a1i x + 3 x log 2
60 2cnd x + 3 x 2
61 3 recnd x + x
62 61 adantr x + 3 x x
63 59 60 62 mulassd x + 3 x log 2 2 x = log 2 2 x
64 57 63 breqtrrd x + 3 x θ x < log 2 2 x
65 20 adantr x + 3 x x 0 < x
66 ltdivmul2 θ x log 2 2 x 0 < x θ x x < log 2 2 θ x < log 2 2 x
67 27 26 65 66 syl3anc x + 3 x θ x x < log 2 2 θ x < log 2 2 x
68 64 67 mpbird x + 3 x θ x x < log 2 2
69 25 26 68 ltled x + 3 x θ x x log 2 2
70 24 69 eqbrtrd x + 3 x θ x x log 2 2
71 70 adantl x + 3 x θ x x log 2 2
72 2 9 11 17 71 elo1d x + θ x x 𝑂1
73 72 mptru x + θ x x 𝑂1