Step |
Hyp |
Ref |
Expression |
1 |
|
chtppilim.1 |
|
2 |
|
chtppilim.2 |
|
3 |
|
simpr |
|
4 |
|
2re |
|
5 |
|
elicopnf |
|
6 |
4 5
|
ax-mp |
|
7 |
3 6
|
sylib |
|
8 |
7
|
simpld |
|
9 |
|
0red |
|
10 |
4
|
a1i |
|
11 |
|
2pos |
|
12 |
11
|
a1i |
|
13 |
7
|
simprd |
|
14 |
9 10 8 12 13
|
ltletrd |
|
15 |
8 14
|
elrpd |
|
16 |
1
|
rpred |
|
17 |
16
|
adantr |
|
18 |
15 17
|
rpcxpcld |
|
19 |
|
ppinncl |
|
20 |
7 19
|
syl |
|
21 |
20
|
nnrpd |
|
22 |
18 21
|
rpdivcld |
|
23 |
22
|
ralrimiva |
|
24 |
|
1re |
|
25 |
|
difrp |
|
26 |
16 24 25
|
sylancl |
|
27 |
2 26
|
mpbid |
|
28 |
|
ovexd |
|
29 |
24
|
a1i |
|
30 |
|
1lt2 |
|
31 |
30
|
a1i |
|
32 |
29 10 8 31 13
|
ltletrd |
|
33 |
8 32
|
rplogcld |
|
34 |
15 33
|
rpdivcld |
|
35 |
34 21
|
rpdivcld |
|
36 |
27
|
adantr |
|
37 |
36
|
rpred |
|
38 |
15 37
|
rpcxpcld |
|
39 |
33 38
|
rpdivcld |
|
40 |
|
eqidd |
|
41 |
|
eqidd |
|
42 |
28 35 39 40 41
|
offval2 |
|
43 |
34
|
rpcnd |
|
44 |
39
|
rpcnd |
|
45 |
21
|
rpcnne0d |
|
46 |
|
div23 |
|
47 |
43 44 45 46
|
syl3anc |
|
48 |
33
|
rpcnne0d |
|
49 |
38
|
rpcnne0d |
|
50 |
8
|
recnd |
|
51 |
|
dmdcan |
|
52 |
48 49 50 51
|
syl3anc |
|
53 |
43 44
|
mulcomd |
|
54 |
15
|
rpcnne0d |
|
55 |
|
ax-1cn |
|
56 |
55
|
a1i |
|
57 |
36
|
rpcnd |
|
58 |
|
cxpsub |
|
59 |
54 56 57 58
|
syl3anc |
|
60 |
17
|
recnd |
|
61 |
|
nncan |
|
62 |
55 60 61
|
sylancr |
|
63 |
62
|
oveq2d |
|
64 |
59 63
|
eqtr3d |
|
65 |
50
|
cxp1d |
|
66 |
65
|
oveq1d |
|
67 |
64 66
|
eqtr3d |
|
68 |
52 53 67
|
3eqtr4d |
|
69 |
68
|
oveq1d |
|
70 |
47 69
|
eqtr3d |
|
71 |
70
|
mpteq2dva |
|
72 |
42 71
|
eqtrd |
|
73 |
|
chebbnd1 |
|
74 |
15
|
ex |
|
75 |
74
|
ssrdv |
|
76 |
|
cxploglim |
|
77 |
27 76
|
syl |
|
78 |
75 77
|
rlimres2 |
|
79 |
|
o1rlimmul |
|
80 |
73 78 79
|
sylancr |
|
81 |
72 80
|
eqbrtrrd |
|
82 |
23 27 81
|
rlimi |
|
83 |
22
|
rpcnd |
|
84 |
83
|
subid1d |
|
85 |
84
|
fveq2d |
|
86 |
22
|
rpred |
|
87 |
22
|
rpge0d |
|
88 |
86 87
|
absidd |
|
89 |
85 88
|
eqtrd |
|
90 |
89
|
breq1d |
|
91 |
1
|
adantr |
|
92 |
2
|
adantr |
|
93 |
|
simprl |
|
94 |
|
simprr |
|
95 |
91 92 93 94
|
chtppilimlem1 |
|
96 |
95
|
expr |
|
97 |
90 96
|
sylbid |
|
98 |
97
|
imim2d |
|
99 |
98
|
ralimdva |
|
100 |
99
|
reximdv |
|
101 |
82 100
|
mpd |
|