Metamath Proof Explorer


Theorem chtprm

Description: The Chebyshev function at a prime. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion chtprm A A + 1 θ A + 1 = θ A + log A + 1

Proof

Step Hyp Ref Expression
1 peano2z A A + 1
2 1 adantr A A + 1 A + 1
3 zre A + 1 A + 1
4 2 3 syl A A + 1 A + 1
5 chtval A + 1 θ A + 1 = p 0 A + 1 log p
6 4 5 syl A A + 1 θ A + 1 = p 0 A + 1 log p
7 ppisval A + 1 0 A + 1 = 2 A + 1
8 4 7 syl A A + 1 0 A + 1 = 2 A + 1
9 flid A + 1 A + 1 = A + 1
10 2 9 syl A A + 1 A + 1 = A + 1
11 10 oveq2d A A + 1 2 A + 1 = 2 A + 1
12 11 ineq1d A A + 1 2 A + 1 = 2 A + 1
13 8 12 eqtrd A A + 1 0 A + 1 = 2 A + 1
14 13 sumeq1d A A + 1 p 0 A + 1 log p = p 2 A + 1 log p
15 6 14 eqtrd A A + 1 θ A + 1 = p 2 A + 1 log p
16 zre A A
17 16 adantr A A + 1 A
18 17 ltp1d A A + 1 A < A + 1
19 17 4 ltnled A A + 1 A < A + 1 ¬ A + 1 A
20 18 19 mpbid A A + 1 ¬ A + 1 A
21 elinel1 A + 1 2 A A + 1 2 A
22 elfzle2 A + 1 2 A A + 1 A
23 21 22 syl A + 1 2 A A + 1 A
24 20 23 nsyl A A + 1 ¬ A + 1 2 A
25 disjsn 2 A A + 1 = ¬ A + 1 2 A
26 24 25 sylibr A A + 1 2 A A + 1 =
27 2z 2
28 zcn A A
29 28 adantr A A + 1 A
30 ax-1cn 1
31 pncan A 1 A + 1 - 1 = A
32 29 30 31 sylancl A A + 1 A + 1 - 1 = A
33 prmuz2 A + 1 A + 1 2
34 33 adantl A A + 1 A + 1 2
35 uz2m1nn A + 1 2 A + 1 - 1
36 34 35 syl A A + 1 A + 1 - 1
37 32 36 eqeltrrd A A + 1 A
38 nnuz = 1
39 2m1e1 2 1 = 1
40 39 fveq2i 2 1 = 1
41 38 40 eqtr4i = 2 1
42 37 41 eleqtrdi A A + 1 A 2 1
43 fzsuc2 2 A 2 1 2 A + 1 = 2 A A + 1
44 27 42 43 sylancr A A + 1 2 A + 1 = 2 A A + 1
45 44 ineq1d A A + 1 2 A + 1 = 2 A A + 1
46 indir 2 A A + 1 = 2 A A + 1
47 45 46 eqtrdi A A + 1 2 A + 1 = 2 A A + 1
48 simpr A A + 1 A + 1
49 48 snssd A A + 1 A + 1
50 df-ss A + 1 A + 1 = A + 1
51 49 50 sylib A A + 1 A + 1 = A + 1
52 51 uneq2d A A + 1 2 A A + 1 = 2 A A + 1
53 47 52 eqtrd A A + 1 2 A + 1 = 2 A A + 1
54 fzfid A A + 1 2 A + 1 Fin
55 inss1 2 A + 1 2 A + 1
56 ssfi 2 A + 1 Fin 2 A + 1 2 A + 1 2 A + 1 Fin
57 54 55 56 sylancl A A + 1 2 A + 1 Fin
58 simpr A A + 1 p 2 A + 1 p 2 A + 1
59 58 elin2d A A + 1 p 2 A + 1 p
60 prmnn p p
61 59 60 syl A A + 1 p 2 A + 1 p
62 61 nnrpd A A + 1 p 2 A + 1 p +
63 62 relogcld A A + 1 p 2 A + 1 log p
64 63 recnd A A + 1 p 2 A + 1 log p
65 26 53 57 64 fsumsplit A A + 1 p 2 A + 1 log p = p 2 A log p + p A + 1 log p
66 chtval A θ A = p 0 A log p
67 17 66 syl A A + 1 θ A = p 0 A log p
68 ppisval A 0 A = 2 A
69 17 68 syl A A + 1 0 A = 2 A
70 flid A A = A
71 70 adantr A A + 1 A = A
72 71 oveq2d A A + 1 2 A = 2 A
73 72 ineq1d A A + 1 2 A = 2 A
74 69 73 eqtrd A A + 1 0 A = 2 A
75 74 sumeq1d A A + 1 p 0 A log p = p 2 A log p
76 67 75 eqtr2d A A + 1 p 2 A log p = θ A
77 prmnn A + 1 A + 1
78 77 adantl A A + 1 A + 1
79 78 nnrpd A A + 1 A + 1 +
80 79 relogcld A A + 1 log A + 1
81 80 recnd A A + 1 log A + 1
82 fveq2 p = A + 1 log p = log A + 1
83 82 sumsn A + 1 log A + 1 p A + 1 log p = log A + 1
84 78 81 83 syl2anc A A + 1 p A + 1 log p = log A + 1
85 76 84 oveq12d A A + 1 p 2 A log p + p A + 1 log p = θ A + log A + 1
86 15 65 85 3eqtrd A A + 1 θ A + 1 = θ A + log A + 1