Step |
Hyp |
Ref |
Expression |
1 |
|
peano2z |
|
2 |
1
|
adantr |
|
3 |
|
zre |
|
4 |
2 3
|
syl |
|
5 |
|
chtval |
|
6 |
4 5
|
syl |
|
7 |
|
ppisval |
|
8 |
4 7
|
syl |
|
9 |
|
flid |
|
10 |
2 9
|
syl |
|
11 |
10
|
oveq2d |
|
12 |
11
|
ineq1d |
|
13 |
8 12
|
eqtrd |
|
14 |
13
|
sumeq1d |
|
15 |
6 14
|
eqtrd |
|
16 |
|
zre |
|
17 |
16
|
adantr |
|
18 |
17
|
ltp1d |
|
19 |
17 4
|
ltnled |
|
20 |
18 19
|
mpbid |
|
21 |
|
elinel1 |
|
22 |
|
elfzle2 |
|
23 |
21 22
|
syl |
|
24 |
20 23
|
nsyl |
|
25 |
|
disjsn |
|
26 |
24 25
|
sylibr |
|
27 |
|
2z |
|
28 |
|
zcn |
|
29 |
28
|
adantr |
|
30 |
|
ax-1cn |
|
31 |
|
pncan |
|
32 |
29 30 31
|
sylancl |
|
33 |
|
prmuz2 |
|
34 |
33
|
adantl |
|
35 |
|
uz2m1nn |
|
36 |
34 35
|
syl |
|
37 |
32 36
|
eqeltrrd |
|
38 |
|
nnuz |
|
39 |
|
2m1e1 |
|
40 |
39
|
fveq2i |
|
41 |
38 40
|
eqtr4i |
|
42 |
37 41
|
eleqtrdi |
|
43 |
|
fzsuc2 |
|
44 |
27 42 43
|
sylancr |
|
45 |
44
|
ineq1d |
|
46 |
|
indir |
|
47 |
45 46
|
eqtrdi |
|
48 |
|
simpr |
|
49 |
48
|
snssd |
|
50 |
|
df-ss |
|
51 |
49 50
|
sylib |
|
52 |
51
|
uneq2d |
|
53 |
47 52
|
eqtrd |
|
54 |
|
fzfid |
|
55 |
|
inss1 |
|
56 |
|
ssfi |
|
57 |
54 55 56
|
sylancl |
|
58 |
|
simpr |
|
59 |
58
|
elin2d |
|
60 |
|
prmnn |
|
61 |
59 60
|
syl |
|
62 |
61
|
nnrpd |
|
63 |
62
|
relogcld |
|
64 |
63
|
recnd |
|
65 |
26 53 57 64
|
fsumsplit |
|
66 |
|
chtval |
|
67 |
17 66
|
syl |
|
68 |
|
ppisval |
|
69 |
17 68
|
syl |
|
70 |
|
flid |
|
71 |
70
|
adantr |
|
72 |
71
|
oveq2d |
|
73 |
72
|
ineq1d |
|
74 |
69 73
|
eqtrd |
|
75 |
74
|
sumeq1d |
|
76 |
67 75
|
eqtr2d |
|
77 |
|
prmnn |
|
78 |
77
|
adantl |
|
79 |
78
|
nnrpd |
|
80 |
79
|
relogcld |
|
81 |
80
|
recnd |
|
82 |
|
fveq2 |
|
83 |
82
|
sumsn |
|
84 |
78 81 83
|
syl2anc |
|
85 |
76 84
|
oveq12d |
|
86 |
15 65 85
|
3eqtrd |
|