Metamath Proof Explorer


Theorem chtrpcl

Description: Closure of the Chebyshev function in the positive reals. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion chtrpcl A 2 A θ A +

Proof

Step Hyp Ref Expression
1 chtcl A θ A
2 1 adantr A 2 A θ A
3 0red A 2 A 0
4 2re 2
5 1lt2 1 < 2
6 rplogcl 2 1 < 2 log 2 +
7 4 5 6 mp2an log 2 +
8 rpre log 2 + log 2
9 7 8 mp1i A 2 A log 2
10 rpgt0 log 2 + 0 < log 2
11 7 10 mp1i A 2 A 0 < log 2
12 cht2 θ 2 = log 2
13 chtwordi 2 A 2 A θ 2 θ A
14 4 13 mp3an1 A 2 A θ 2 θ A
15 12 14 eqbrtrrid A 2 A log 2 θ A
16 3 9 2 11 15 ltletrd A 2 A 0 < θ A
17 2 16 elrpd A 2 A θ A +