Metamath Proof Explorer


Theorem chtublem

Description: Lemma for chtub . (Contributed by Mario Carneiro, 13-Mar-2014)

Ref Expression
Assertion chtublem N θ 2 N 1 θ N + log 4 N 1

Proof

Step Hyp Ref Expression
1 2nn 2
2 nnmulcl 2 N 2 N
3 1 2 mpan N 2 N
4 3 nnred N 2 N
5 peano2rem 2 N 2 N 1
6 4 5 syl N 2 N 1
7 chtcl 2 N 1 θ 2 N 1
8 6 7 syl N θ 2 N 1
9 nnre N N
10 chtcl N θ N
11 9 10 syl N θ N
12 nnnn0 N N 0
13 2m1e1 2 1 = 1
14 13 oveq2i 2 N 2 1 = 2 N 1
15 3 nncnd N 2 N
16 2cn 2
17 ax-1cn 1
18 subsub 2 N 2 1 2 N 2 1 = 2 N - 2 + 1
19 16 17 18 mp3an23 2 N 2 N 2 1 = 2 N - 2 + 1
20 15 19 syl N 2 N 2 1 = 2 N - 2 + 1
21 nncn N N
22 subdi 2 N 1 2 N 1 = 2 N 2 1
23 16 17 22 mp3an13 N 2 N 1 = 2 N 2 1
24 21 23 syl N 2 N 1 = 2 N 2 1
25 2t1e2 2 1 = 2
26 25 oveq2i 2 N 2 1 = 2 N 2
27 24 26 eqtrdi N 2 N 1 = 2 N 2
28 27 oveq1d N 2 N 1 + 1 = 2 N - 2 + 1
29 20 28 eqtr4d N 2 N 2 1 = 2 N 1 + 1
30 14 29 eqtr3id N 2 N 1 = 2 N 1 + 1
31 2nn0 2 0
32 nnm1nn0 N N 1 0
33 nn0mulcl 2 0 N 1 0 2 N 1 0
34 31 32 33 sylancr N 2 N 1 0
35 nn0p1nn 2 N 1 0 2 N 1 + 1
36 34 35 syl N 2 N 1 + 1
37 30 36 eqeltrd N 2 N 1
38 nnnn0 2 N 1 2 N 1 0
39 37 38 syl N 2 N 1 0
40 1re 1
41 40 a1i N 1
42 nnge1 N 1 N
43 41 9 9 42 leadd2dd N N + 1 N + N
44 21 2timesd N 2 N = N + N
45 43 44 breqtrrd N N + 1 2 N
46 leaddsub N 1 2 N N + 1 2 N N 2 N 1
47 9 41 4 46 syl3anc N N + 1 2 N N 2 N 1
48 45 47 mpbid N N 2 N 1
49 elfz2nn0 N 0 2 N 1 N 0 2 N 1 0 N 2 N 1
50 12 39 48 49 syl3anbrc N N 0 2 N 1
51 bccl2 N 0 2 N 1 ( 2 N 1 N)
52 50 51 syl N ( 2 N 1 N)
53 52 nnrpd N ( 2 N 1 N) +
54 53 relogcld N log ( 2 N 1 N)
55 11 54 readdcld N θ N + log ( 2 N 1 N)
56 4re 4
57 4pos 0 < 4
58 56 57 elrpii 4 +
59 relogcl 4 + log 4
60 58 59 ax-mp log 4
61 32 nn0red N N 1
62 remulcl log 4 N 1 log 4 N 1
63 60 61 62 sylancr N log 4 N 1
64 11 63 readdcld N θ N + log 4 N 1
65 iftrue p 2 N 1 if p 2 N 1 1 0 = 1
66 65 adantl N p p 2 N 1 if p 2 N 1 1 0 = 1
67 simpr N p p
68 52 adantr N p ( 2 N 1 N)
69 67 68 pccld N p p pCnt ( 2 N 1 N) 0
70 nn0addge1 1 p pCnt ( 2 N 1 N) 0 1 1 + p pCnt ( 2 N 1 N)
71 40 69 70 sylancr N p 1 1 + p pCnt ( 2 N 1 N)
72 iftrue p N if p N 1 0 = 1
73 72 oveq1d p N if p N 1 0 + p pCnt ( 2 N 1 N) = 1 + p pCnt ( 2 N 1 N)
74 73 breq2d p N 1 if p N 1 0 + p pCnt ( 2 N 1 N) 1 1 + p pCnt ( 2 N 1 N)
75 71 74 syl5ibrcom N p p N 1 if p N 1 0 + p pCnt ( 2 N 1 N)
76 75 adantr N p p 2 N 1 p N 1 if p N 1 0 + p pCnt ( 2 N 1 N)
77 prmnn p p
78 77 ad2antlr N p p 2 N 1 ¬ p N p
79 simprl N p p 2 N 1 ¬ p N p 2 N 1
80 prmz p p
81 37 nnzd N 2 N 1
82 eluz p 2 N 1 2 N 1 p p 2 N 1
83 80 81 82 syl2anr N p 2 N 1 p p 2 N 1
84 83 adantr N p p 2 N 1 ¬ p N 2 N 1 p p 2 N 1
85 79 84 mpbird N p p 2 N 1 ¬ p N 2 N 1 p
86 dvdsfac p 2 N 1 p p 2 N 1 !
87 78 85 86 syl2anc N p p 2 N 1 ¬ p N p 2 N 1 !
88 id p p
89 39 faccld N 2 N 1 !
90 pcelnn p 2 N 1 ! p pCnt 2 N 1 ! p 2 N 1 !
91 88 89 90 syl2anr N p p pCnt 2 N 1 ! p 2 N 1 !
92 91 adantr N p p 2 N 1 ¬ p N p pCnt 2 N 1 ! p 2 N 1 !
93 87 92 mpbird N p p 2 N 1 ¬ p N p pCnt 2 N 1 !
94 93 nnge1d N p p 2 N 1 ¬ p N 1 p pCnt 2 N 1 !
95 iffalse ¬ p N if p N 1 0 = 0
96 95 oveq1d ¬ p N if p N 1 0 + p pCnt ( 2 N 1 N) = 0 + p pCnt ( 2 N 1 N)
97 96 ad2antll N p p 2 N 1 ¬ p N if p N 1 0 + p pCnt ( 2 N 1 N) = 0 + p pCnt ( 2 N 1 N)
98 69 nn0cnd N p p pCnt ( 2 N 1 N)
99 98 addid2d N p 0 + p pCnt ( 2 N 1 N) = p pCnt ( 2 N 1 N)
100 99 adantr N p p 2 N 1 ¬ p N 0 + p pCnt ( 2 N 1 N) = p pCnt ( 2 N 1 N)
101 bcval2 N 0 2 N 1 ( 2 N 1 N) = 2 N 1 ! 2 N - 1 - N ! N !
102 50 101 syl N ( 2 N 1 N) = 2 N 1 ! 2 N - 1 - N ! N !
103 32 nn0cnd N N 1
104 17 a1i N 1
105 44 oveq1d N 2 N 1 = N + N - 1
106 21 21 104 105 assraddsubd N 2 N 1 = N + N - 1
107 21 103 106 mvrladdd N 2 N - 1 - N = N 1
108 107 fveq2d N 2 N - 1 - N ! = N 1 !
109 108 oveq1d N 2 N - 1 - N ! N ! = N 1 ! N !
110 109 oveq2d N 2 N 1 ! 2 N - 1 - N ! N ! = 2 N 1 ! N 1 ! N !
111 102 110 eqtrd N ( 2 N 1 N) = 2 N 1 ! N 1 ! N !
112 111 adantr N p ( 2 N 1 N) = 2 N 1 ! N 1 ! N !
113 112 oveq2d N p p pCnt ( 2 N 1 N) = p pCnt 2 N 1 ! N 1 ! N !
114 nnz 2 N 1 ! 2 N 1 !
115 nnne0 2 N 1 ! 2 N 1 ! 0
116 114 115 jca 2 N 1 ! 2 N 1 ! 2 N 1 ! 0
117 89 116 syl N 2 N 1 ! 2 N 1 ! 0
118 117 adantr N p 2 N 1 ! 2 N 1 ! 0
119 32 faccld N N 1 !
120 12 faccld N N !
121 119 120 nnmulcld N N 1 ! N !
122 121 adantr N p N 1 ! N !
123 pcdiv p 2 N 1 ! 2 N 1 ! 0 N 1 ! N ! p pCnt 2 N 1 ! N 1 ! N ! = p pCnt 2 N 1 ! p pCnt N 1 ! N !
124 67 118 122 123 syl3anc N p p pCnt 2 N 1 ! N 1 ! N ! = p pCnt 2 N 1 ! p pCnt N 1 ! N !
125 nnz N 1 ! N 1 !
126 nnne0 N 1 ! N 1 ! 0
127 125 126 jca N 1 ! N 1 ! N 1 ! 0
128 119 127 syl N N 1 ! N 1 ! 0
129 128 adantr N p N 1 ! N 1 ! 0
130 nnz N ! N !
131 nnne0 N ! N ! 0
132 130 131 jca N ! N ! N ! 0
133 120 132 syl N N ! N ! 0
134 133 adantr N p N ! N ! 0
135 pcmul p N 1 ! N 1 ! 0 N ! N ! 0 p pCnt N 1 ! N ! = p pCnt N 1 ! + p pCnt N !
136 67 129 134 135 syl3anc N p p pCnt N 1 ! N ! = p pCnt N 1 ! + p pCnt N !
137 136 oveq2d N p p pCnt 2 N 1 ! p pCnt N 1 ! N ! = p pCnt 2 N 1 ! p pCnt N 1 ! + p pCnt N !
138 113 124 137 3eqtrd N p p pCnt ( 2 N 1 N) = p pCnt 2 N 1 ! p pCnt N 1 ! + p pCnt N !
139 138 adantr N p p 2 N 1 ¬ p N p pCnt ( 2 N 1 N) = p pCnt 2 N 1 ! p pCnt N 1 ! + p pCnt N !
140 simprr N p p 2 N 1 ¬ p N ¬ p N
141 prmfac1 N 0 p p N ! p N
142 141 3expia N 0 p p N ! p N
143 12 142 sylan N p p N ! p N
144 143 adantr N p p 2 N 1 ¬ p N p N ! p N
145 140 144 mtod N p p 2 N 1 ¬ p N ¬ p N !
146 80 adantl N p p
147 129 simpld N p N 1 !
148 nnz N N
149 148 adantr N p N
150 dvdsmultr1 p N 1 ! N p N 1 ! p N 1 ! N
151 146 147 149 150 syl3anc N p p N 1 ! p N 1 ! N
152 facnn2 N N ! = N 1 ! N
153 152 adantr N p N ! = N 1 ! N
154 153 breq2d N p p N ! p N 1 ! N
155 151 154 sylibrd N p p N 1 ! p N !
156 155 adantr N p p 2 N 1 ¬ p N p N 1 ! p N !
157 145 156 mtod N p p 2 N 1 ¬ p N ¬ p N 1 !
158 pceq0 p N 1 ! p pCnt N 1 ! = 0 ¬ p N 1 !
159 88 119 158 syl2anr N p p pCnt N 1 ! = 0 ¬ p N 1 !
160 159 adantr N p p 2 N 1 ¬ p N p pCnt N 1 ! = 0 ¬ p N 1 !
161 157 160 mpbird N p p 2 N 1 ¬ p N p pCnt N 1 ! = 0
162 pceq0 p N ! p pCnt N ! = 0 ¬ p N !
163 88 120 162 syl2anr N p p pCnt N ! = 0 ¬ p N !
164 163 adantr N p p 2 N 1 ¬ p N p pCnt N ! = 0 ¬ p N !
165 145 164 mpbird N p p 2 N 1 ¬ p N p pCnt N ! = 0
166 161 165 oveq12d N p p 2 N 1 ¬ p N p pCnt N 1 ! + p pCnt N ! = 0 + 0
167 00id 0 + 0 = 0
168 166 167 eqtrdi N p p 2 N 1 ¬ p N p pCnt N 1 ! + p pCnt N ! = 0
169 168 oveq2d N p p 2 N 1 ¬ p N p pCnt 2 N 1 ! p pCnt N 1 ! + p pCnt N ! = p pCnt 2 N 1 ! 0
170 pccl p 2 N 1 ! p pCnt 2 N 1 ! 0
171 88 89 170 syl2anr N p p pCnt 2 N 1 ! 0
172 171 nn0cnd N p p pCnt 2 N 1 !
173 172 subid1d N p p pCnt 2 N 1 ! 0 = p pCnt 2 N 1 !
174 173 adantr N p p 2 N 1 ¬ p N p pCnt 2 N 1 ! 0 = p pCnt 2 N 1 !
175 139 169 174 3eqtrd N p p 2 N 1 ¬ p N p pCnt ( 2 N 1 N) = p pCnt 2 N 1 !
176 97 100 175 3eqtrd N p p 2 N 1 ¬ p N if p N 1 0 + p pCnt ( 2 N 1 N) = p pCnt 2 N 1 !
177 94 176 breqtrrd N p p 2 N 1 ¬ p N 1 if p N 1 0 + p pCnt ( 2 N 1 N)
178 177 expr N p p 2 N 1 ¬ p N 1 if p N 1 0 + p pCnt ( 2 N 1 N)
179 76 178 pm2.61d N p p 2 N 1 1 if p N 1 0 + p pCnt ( 2 N 1 N)
180 66 179 eqbrtrd N p p 2 N 1 if p 2 N 1 1 0 if p N 1 0 + p pCnt ( 2 N 1 N)
181 180 ex N p p 2 N 1 if p 2 N 1 1 0 if p N 1 0 + p pCnt ( 2 N 1 N)
182 1nn0 1 0
183 0nn0 0 0
184 182 183 ifcli if p N 1 0 0
185 nn0addcl if p N 1 0 0 p pCnt ( 2 N 1 N) 0 if p N 1 0 + p pCnt ( 2 N 1 N) 0
186 184 69 185 sylancr N p if p N 1 0 + p pCnt ( 2 N 1 N) 0
187 186 nn0ge0d N p 0 if p N 1 0 + p pCnt ( 2 N 1 N)
188 iffalse ¬ p 2 N 1 if p 2 N 1 1 0 = 0
189 188 breq1d ¬ p 2 N 1 if p 2 N 1 1 0 if p N 1 0 + p pCnt ( 2 N 1 N) 0 if p N 1 0 + p pCnt ( 2 N 1 N)
190 187 189 syl5ibrcom N p ¬ p 2 N 1 if p 2 N 1 1 0 if p N 1 0 + p pCnt ( 2 N 1 N)
191 181 190 pm2.61d N p if p 2 N 1 1 0 if p N 1 0 + p pCnt ( 2 N 1 N)
192 eqid n if n n 1 = n if n n 1
193 192 prmorcht 2 N 1 e θ 2 N 1 = seq 1 × n if n n 1 2 N 1
194 37 193 syl N e θ 2 N 1 = seq 1 × n if n n 1 2 N 1
195 194 oveq2d N p pCnt e θ 2 N 1 = p pCnt seq 1 × n if n n 1 2 N 1
196 195 adantr N p p pCnt e θ 2 N 1 = p pCnt seq 1 × n if n n 1 2 N 1
197 nncn n n
198 197 exp1d n n 1 = n
199 198 ifeq1d n if n n 1 1 = if n n 1
200 199 mpteq2ia n if n n 1 1 = n if n n 1
201 200 eqcomi n if n n 1 = n if n n 1 1
202 182 a1i N p n 1 0
203 202 ralrimiva N p n 1 0
204 37 adantr N p 2 N 1
205 eqidd n = p 1 = 1
206 201 203 204 67 205 pcmpt N p p pCnt seq 1 × n if n n 1 2 N 1 = if p 2 N 1 1 0
207 196 206 eqtrd N p p pCnt e θ 2 N 1 = if p 2 N 1 1 0
208 efchtcl N e θ N
209 9 208 syl N e θ N
210 209 adantr N p e θ N
211 nnz e θ N e θ N
212 nnne0 e θ N e θ N 0
213 211 212 jca e θ N e θ N e θ N 0
214 210 213 syl N p e θ N e θ N 0
215 nnz ( 2 N 1 N) ( 2 N 1 N)
216 nnne0 ( 2 N 1 N) ( 2 N 1 N) 0
217 215 216 jca ( 2 N 1 N) ( 2 N 1 N) ( 2 N 1 N) 0
218 68 217 syl N p ( 2 N 1 N) ( 2 N 1 N) 0
219 pcmul p e θ N e θ N 0 ( 2 N 1 N) ( 2 N 1 N) 0 p pCnt e θ N ( 2 N 1 N) = p pCnt e θ N + p pCnt ( 2 N 1 N)
220 67 214 218 219 syl3anc N p p pCnt e θ N ( 2 N 1 N) = p pCnt e θ N + p pCnt ( 2 N 1 N)
221 192 prmorcht N e θ N = seq 1 × n if n n 1 N
222 221 oveq2d N p pCnt e θ N = p pCnt seq 1 × n if n n 1 N
223 222 adantr N p p pCnt e θ N = p pCnt seq 1 × n if n n 1 N
224 simpl N p N
225 201 203 224 67 205 pcmpt N p p pCnt seq 1 × n if n n 1 N = if p N 1 0
226 223 225 eqtrd N p p pCnt e θ N = if p N 1 0
227 226 oveq1d N p p pCnt e θ N + p pCnt ( 2 N 1 N) = if p N 1 0 + p pCnt ( 2 N 1 N)
228 220 227 eqtrd N p p pCnt e θ N ( 2 N 1 N) = if p N 1 0 + p pCnt ( 2 N 1 N)
229 191 207 228 3brtr4d N p p pCnt e θ 2 N 1 p pCnt e θ N ( 2 N 1 N)
230 229 ralrimiva N p p pCnt e θ 2 N 1 p pCnt e θ N ( 2 N 1 N)
231 efchtcl 2 N 1 e θ 2 N 1
232 6 231 syl N e θ 2 N 1
233 232 nnzd N e θ 2 N 1
234 209 52 nnmulcld N e θ N ( 2 N 1 N)
235 234 nnzd N e θ N ( 2 N 1 N)
236 pc2dvds e θ 2 N 1 e θ N ( 2 N 1 N) e θ 2 N 1 e θ N ( 2 N 1 N) p p pCnt e θ 2 N 1 p pCnt e θ N ( 2 N 1 N)
237 233 235 236 syl2anc N e θ 2 N 1 e θ N ( 2 N 1 N) p p pCnt e θ 2 N 1 p pCnt e θ N ( 2 N 1 N)
238 230 237 mpbird N e θ 2 N 1 e θ N ( 2 N 1 N)
239 dvdsle e θ 2 N 1 e θ N ( 2 N 1 N) e θ 2 N 1 e θ N ( 2 N 1 N) e θ 2 N 1 e θ N ( 2 N 1 N)
240 233 234 239 syl2anc N e θ 2 N 1 e θ N ( 2 N 1 N) e θ 2 N 1 e θ N ( 2 N 1 N)
241 238 240 mpd N e θ 2 N 1 e θ N ( 2 N 1 N)
242 11 recnd N θ N
243 54 recnd N log ( 2 N 1 N)
244 efadd θ N log ( 2 N 1 N) e θ N + log ( 2 N 1 N) = e θ N e log ( 2 N 1 N)
245 242 243 244 syl2anc N e θ N + log ( 2 N 1 N) = e θ N e log ( 2 N 1 N)
246 53 reeflogd N e log ( 2 N 1 N) = ( 2 N 1 N)
247 246 oveq2d N e θ N e log ( 2 N 1 N) = e θ N ( 2 N 1 N)
248 245 247 eqtrd N e θ N + log ( 2 N 1 N) = e θ N ( 2 N 1 N)
249 241 248 breqtrrd N e θ 2 N 1 e θ N + log ( 2 N 1 N)
250 efle θ 2 N 1 θ N + log ( 2 N 1 N) θ 2 N 1 θ N + log ( 2 N 1 N) e θ 2 N 1 e θ N + log ( 2 N 1 N)
251 8 55 250 syl2anc N θ 2 N 1 θ N + log ( 2 N 1 N) e θ 2 N 1 e θ N + log ( 2 N 1 N)
252 249 251 mpbird N θ 2 N 1 θ N + log ( 2 N 1 N)
253 fzfid N 0 2 N 1 Fin
254 elfzelz k 0 2 N 1 k
255 bccl 2 N 1 0 k ( 2 N 1 k) 0
256 39 254 255 syl2an N k 0 2 N 1 ( 2 N 1 k) 0
257 256 nn0red N k 0 2 N 1 ( 2 N 1 k)
258 256 nn0ge0d N k 0 2 N 1 0 ( 2 N 1 k)
259 nn0uz 0 = 0
260 32 259 eleqtrdi N N 1 0
261 fzss1 N 1 0 N 1 N 0 N
262 260 261 syl N N 1 N 0 N
263 eluz N 2 N 1 2 N 1 N N 2 N 1
264 148 81 263 syl2anc N 2 N 1 N N 2 N 1
265 48 264 mpbird N 2 N 1 N
266 fzss2 2 N 1 N 0 N 0 2 N 1
267 265 266 syl N 0 N 0 2 N 1
268 262 267 sstrd N N 1 N 0 2 N 1
269 253 257 258 268 fsumless N k = N 1 N ( 2 N 1 k) k = 0 2 N 1 ( 2 N 1 k)
270 32 nn0zd N N 1
271 bccmpl 2 N 1 0 N ( 2 N 1 N) = ( 2 N 1 2 N - 1 - N )
272 39 148 271 syl2anc N ( 2 N 1 N) = ( 2 N 1 2 N - 1 - N )
273 107 oveq2d N ( 2 N 1 2 N - 1 - N ) = ( 2 N 1 N 1 )
274 272 273 eqtrd N ( 2 N 1 N) = ( 2 N 1 N 1 )
275 52 nncnd N ( 2 N 1 N)
276 274 275 eqeltrrd N ( 2 N 1 N 1 )
277 oveq2 k = N 1 ( 2 N 1 k) = ( 2 N 1 N 1 )
278 277 fsum1 N 1 ( 2 N 1 N 1 ) k = N 1 N 1 ( 2 N 1 k) = ( 2 N 1 N 1 )
279 270 276 278 syl2anc N k = N 1 N 1 ( 2 N 1 k) = ( 2 N 1 N 1 )
280 279 274 eqtr4d N k = N 1 N 1 ( 2 N 1 k) = ( 2 N 1 N)
281 280 oveq1d N k = N 1 N 1 ( 2 N 1 k) + ( 2 N 1 N) = ( 2 N 1 N) + ( 2 N 1 N)
282 21 104 npcand N N - 1 + 1 = N
283 uzid N 1 N 1 N 1
284 270 283 syl N N 1 N 1
285 peano2uz N 1 N 1 N - 1 + 1 N 1
286 284 285 syl N N - 1 + 1 N 1
287 282 286 eqeltrrd N N N 1
288 268 sselda N k N 1 N k 0 2 N 1
289 256 nn0cnd N k 0 2 N 1 ( 2 N 1 k)
290 288 289 syldan N k N 1 N ( 2 N 1 k)
291 oveq2 k = N ( 2 N 1 k) = ( 2 N 1 N)
292 287 290 291 fsumm1 N k = N 1 N ( 2 N 1 k) = k = N 1 N 1 ( 2 N 1 k) + ( 2 N 1 N)
293 275 2timesd N 2 ( 2 N 1 N) = ( 2 N 1 N) + ( 2 N 1 N)
294 281 292 293 3eqtr4rd N 2 ( 2 N 1 N) = k = N 1 N ( 2 N 1 k)
295 binom11 2 N 1 0 2 2 N 1 = k = 0 2 N 1 ( 2 N 1 k)
296 39 295 syl N 2 2 N 1 = k = 0 2 N 1 ( 2 N 1 k)
297 269 294 296 3brtr4d N 2 ( 2 N 1 N) 2 2 N 1
298 mulcom 2 ( 2 N 1 N) 2 ( 2 N 1 N) = ( 2 N 1 N) 2
299 16 275 298 sylancr N 2 ( 2 N 1 N) = ( 2 N 1 N) 2
300 30 oveq2d N 2 2 N 1 = 2 2 N 1 + 1
301 expp1 2 2 N 1 0 2 2 N 1 + 1 = 2 2 N 1 2
302 16 34 301 sylancr N 2 2 N 1 + 1 = 2 2 N 1 2
303 16 a1i N 2
304 31 a1i N 2 0
305 303 32 304 expmuld N 2 2 N 1 = 2 2 N 1
306 sq2 2 2 = 4
307 306 oveq1i 2 2 N 1 = 4 N 1
308 305 307 eqtrdi N 2 2 N 1 = 4 N 1
309 308 oveq1d N 2 2 N 1 2 = 4 N 1 2
310 300 302 309 3eqtrd N 2 2 N 1 = 4 N 1 2
311 297 299 310 3brtr3d N ( 2 N 1 N) 2 4 N 1 2
312 52 nnred N ( 2 N 1 N)
313 reexpcl 4 N 1 0 4 N 1
314 56 32 313 sylancr N 4 N 1
315 2re 2
316 2pos 0 < 2
317 315 316 pm3.2i 2 0 < 2
318 317 a1i N 2 0 < 2
319 lemul1 ( 2 N 1 N) 4 N 1 2 0 < 2 ( 2 N 1 N) 4 N 1 ( 2 N 1 N) 2 4 N 1 2
320 312 314 318 319 syl3anc N ( 2 N 1 N) 4 N 1 ( 2 N 1 N) 2 4 N 1 2
321 311 320 mpbird N ( 2 N 1 N) 4 N 1
322 60 recni log 4
323 mulcom log 4 N 1 log 4 N 1 = N 1 log 4
324 322 103 323 sylancr N log 4 N 1 = N 1 log 4
325 324 fveq2d N e log 4 N 1 = e N 1 log 4
326 reexplog 4 + N 1 4 N 1 = e N 1 log 4
327 58 270 326 sylancr N 4 N 1 = e N 1 log 4
328 325 327 eqtr4d N e log 4 N 1 = 4 N 1
329 321 246 328 3brtr4d N e log ( 2 N 1 N) e log 4 N 1
330 efle log ( 2 N 1 N) log 4 N 1 log ( 2 N 1 N) log 4 N 1 e log ( 2 N 1 N) e log 4 N 1
331 54 63 330 syl2anc N log ( 2 N 1 N) log 4 N 1 e log ( 2 N 1 N) e log 4 N 1
332 329 331 mpbird N log ( 2 N 1 N) log 4 N 1
333 54 63 11 332 leadd2dd N θ N + log ( 2 N 1 N) θ N + log 4 N 1
334 8 55 64 252 333 letrd N θ 2 N 1 θ N + log 4 N 1