Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Number-theoretical functions
chtval
Next ⟩
efchtcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
chtval
Description:
Value of the Chebyshev function.
(Contributed by
Mario Carneiro
, 15-Sep-2014)
Ref
Expression
Assertion
chtval
⊢
A
∈
ℝ
→
θ
⁡
A
=
∑
p
∈
0
A
∩
ℙ
log
⁡
p
Proof
Step
Hyp
Ref
Expression
1
oveq2
⊢
x
=
A
→
0
x
=
0
A
2
1
ineq1d
⊢
x
=
A
→
0
x
∩
ℙ
=
0
A
∩
ℙ
3
2
sumeq1d
⊢
x
=
A
→
∑
p
∈
0
x
∩
ℙ
log
⁡
p
=
∑
p
∈
0
A
∩
ℙ
log
⁡
p
4
df-cht
⊢
θ
=
x
∈
ℝ
⟼
∑
p
∈
0
x
∩
ℙ
log
⁡
p
5
sumex
⊢
∑
p
∈
0
A
∩
ℙ
log
⁡
p
∈
V
6
3
4
5
fvmpt
⊢
A
∈
ℝ
→
θ
⁡
A
=
∑
p
∈
0
A
∩
ℙ
log
⁡
p