Metamath Proof Explorer


Theorem chtwordi

Description: The Chebyshev function is weakly increasing. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion chtwordi A B A B θ A θ B

Proof

Step Hyp Ref Expression
1 simp2 A B A B B
2 ppifi B 0 B Fin
3 1 2 syl A B A B 0 B Fin
4 simpr A B A B p 0 B p 0 B
5 4 elin2d A B A B p 0 B p
6 prmuz2 p p 2
7 5 6 syl A B A B p 0 B p 2
8 eluz2b2 p 2 p 1 < p
9 7 8 sylib A B A B p 0 B p 1 < p
10 9 simpld A B A B p 0 B p
11 10 nnred A B A B p 0 B p
12 9 simprd A B A B p 0 B 1 < p
13 11 12 rplogcld A B A B p 0 B log p +
14 13 rpred A B A B p 0 B log p
15 13 rpge0d A B A B p 0 B 0 log p
16 0red A B A B 0
17 0le0 0 0
18 17 a1i A B A B 0 0
19 simp3 A B A B A B
20 iccss 0 B 0 0 A B 0 A 0 B
21 16 1 18 19 20 syl22anc A B A B 0 A 0 B
22 21 ssrind A B A B 0 A 0 B
23 3 14 15 22 fsumless A B A B p 0 A log p p 0 B log p
24 chtval A θ A = p 0 A log p
25 24 3ad2ant1 A B A B θ A = p 0 A log p
26 chtval B θ B = p 0 B log p
27 1 26 syl A B A B θ B = p 0 B log p
28 23 25 27 3brtr4d A B A B θ A θ B