Metamath Proof Explorer


Theorem chunssji

Description: Union is smaller than CH join. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 A C
chjcl.2 B C
Assertion chunssji A B A B

Proof

Step Hyp Ref Expression
1 ch0le.1 A C
2 chjcl.2 B C
3 1 chshii A S
4 2 chshii B S
5 3 4 shunssji A B A B