Database
BASIC CATEGORY THEORY
Categories
Isomorphic objects
cic
Metamath Proof Explorer
Theorem cic
Description: Objects X and Y in a category are isomorphic provided that there
is an isomorphism f : X --> Y , see definition 3.15 of Adamek
p. 29. (Contributed by AV , 4-Apr-2020)
Ref
Expression
Hypotheses
cic.i
⊢ I = Iso ⁡ C
cic.b
⊢ B = Base C
cic.c
⊢ φ → C ∈ Cat
cic.x
⊢ φ → X ∈ B
cic.y
⊢ φ → Y ∈ B
Assertion
cic
⊢ φ → X ≃ 𝑐 ⁡ C Y ↔ ∃ f f ∈ X I Y
Proof
Step
Hyp
Ref
Expression
1
cic.i
⊢ I = Iso ⁡ C
2
cic.b
⊢ B = Base C
3
cic.c
⊢ φ → C ∈ Cat
4
cic.x
⊢ φ → X ∈ B
5
cic.y
⊢ φ → Y ∈ B
6
1 2 3 4 5
brcic
⊢ φ → X ≃ 𝑐 ⁡ C Y ↔ X I Y ≠ ∅
7
n0
⊢ X I Y ≠ ∅ ↔ ∃ f f ∈ X I Y
8
6 7
bitrdi
⊢ φ → X ≃ 𝑐 ⁡ C Y ↔ ∃ f f ∈ X I Y