Metamath Proof Explorer


Theorem cic

Description: Objects X and Y in a category are isomorphic provided that there is an isomorphism f : X --> Y , see definition 3.15 of Adamek p. 29. (Contributed by AV, 4-Apr-2020)

Ref Expression
Hypotheses cic.i I = Iso C
cic.b B = Base C
cic.c φ C Cat
cic.x φ X B
cic.y φ Y B
Assertion cic φ X 𝑐 C Y f f X I Y

Proof

Step Hyp Ref Expression
1 cic.i I = Iso C
2 cic.b B = Base C
3 cic.c φ C Cat
4 cic.x φ X B
5 cic.y φ Y B
6 1 2 3 4 5 brcic φ X 𝑐 C Y X I Y
7 n0 X I Y f f X I Y
8 6 7 bitrdi φ X 𝑐 C Y f f X I Y