Description: Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in Adamek p. 29. (Contributed by AV, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | cicer | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabv | |
|
2 | 1 | a1i | |
3 | fveq2 | |
|
4 | 3 | neeq1d | |
5 | 4 | rabxp | |
6 | 5 | a1i | |
7 | 6 | releqd | |
8 | 2 7 | mpbird | |
9 | isofn | |
|
10 | fvex | |
|
11 | sqxpexg | |
|
12 | 10 11 | mp1i | |
13 | 0ex | |
|
14 | 13 | a1i | |
15 | suppvalfn | |
|
16 | 9 12 14 15 | syl3anc | |
17 | 16 | releqd | |
18 | 8 17 | mpbird | |
19 | cicfval | |
|
20 | 19 | releqd | |
21 | 18 20 | mpbird | |
22 | cicsym | |
|
23 | cictr | |
|
24 | 23 | 3expb | |
25 | cicref | |
|
26 | ciclcl | |
|
27 | 25 26 | impbida | |
28 | 21 22 24 27 | iserd | |