Metamath Proof Explorer


Theorem cicer

Description: Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in Adamek p. 29. (Contributed by AV, 5-Apr-2020)

Ref Expression
Assertion cicer C Cat 𝑐 C Er Base C

Proof

Step Hyp Ref Expression
1 relopabv Rel x y | x Base C y Base C Iso C x y
2 1 a1i C Cat Rel x y | x Base C y Base C Iso C x y
3 fveq2 f = x y Iso C f = Iso C x y
4 3 neeq1d f = x y Iso C f Iso C x y
5 4 rabxp f Base C × Base C | Iso C f = x y | x Base C y Base C Iso C x y
6 5 a1i C Cat f Base C × Base C | Iso C f = x y | x Base C y Base C Iso C x y
7 6 releqd C Cat Rel f Base C × Base C | Iso C f Rel x y | x Base C y Base C Iso C x y
8 2 7 mpbird C Cat Rel f Base C × Base C | Iso C f
9 isofn C Cat Iso C Fn Base C × Base C
10 fvex Base C V
11 sqxpexg Base C V Base C × Base C V
12 10 11 mp1i C Cat Base C × Base C V
13 0ex V
14 13 a1i C Cat V
15 suppvalfn Iso C Fn Base C × Base C Base C × Base C V V Iso C supp = f Base C × Base C | Iso C f
16 9 12 14 15 syl3anc C Cat Iso C supp = f Base C × Base C | Iso C f
17 16 releqd C Cat Rel supp Iso C Rel f Base C × Base C | Iso C f
18 8 17 mpbird C Cat Rel supp Iso C
19 cicfval C Cat 𝑐 C = Iso C supp
20 19 releqd C Cat Rel 𝑐 C Rel supp Iso C
21 18 20 mpbird C Cat Rel 𝑐 C
22 cicsym C Cat x 𝑐 C y y 𝑐 C x
23 cictr C Cat x 𝑐 C y y 𝑐 C z x 𝑐 C z
24 23 3expb C Cat x 𝑐 C y y 𝑐 C z x 𝑐 C z
25 cicref C Cat x Base C x 𝑐 C x
26 ciclcl C Cat x 𝑐 C x x Base C
27 25 26 impbida C Cat x Base C x 𝑐 C x
28 21 22 24 27 iserd C Cat 𝑐 C Er Base C