Metamath Proof Explorer


Theorem cicer

Description: Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in Adamek p. 29. (Contributed by AV, 5-Apr-2020)

Ref Expression
Assertion cicer CCat𝑐CErBaseC

Proof

Step Hyp Ref Expression
1 relopabv Relxy|xBaseCyBaseCIsoCxy
2 1 a1i CCatRelxy|xBaseCyBaseCIsoCxy
3 fveq2 f=xyIsoCf=IsoCxy
4 3 neeq1d f=xyIsoCfIsoCxy
5 4 rabxp fBaseC×BaseC|IsoCf=xy|xBaseCyBaseCIsoCxy
6 5 a1i CCatfBaseC×BaseC|IsoCf=xy|xBaseCyBaseCIsoCxy
7 6 releqd CCatRelfBaseC×BaseC|IsoCfRelxy|xBaseCyBaseCIsoCxy
8 2 7 mpbird CCatRelfBaseC×BaseC|IsoCf
9 isofn CCatIsoCFnBaseC×BaseC
10 fvex BaseCV
11 sqxpexg BaseCVBaseC×BaseCV
12 10 11 mp1i CCatBaseC×BaseCV
13 0ex V
14 13 a1i CCatV
15 suppvalfn IsoCFnBaseC×BaseCBaseC×BaseCVVIsoCsupp=fBaseC×BaseC|IsoCf
16 9 12 14 15 syl3anc CCatIsoCsupp=fBaseC×BaseC|IsoCf
17 16 releqd CCatRelsuppIsoCRelfBaseC×BaseC|IsoCf
18 8 17 mpbird CCatRelsuppIsoC
19 cicfval CCat𝑐C=IsoCsupp
20 19 releqd CCatRel𝑐CRelsuppIsoC
21 18 20 mpbird CCatRel𝑐C
22 cicsym CCatx𝑐Cyy𝑐Cx
23 cictr CCatx𝑐Cyy𝑐Czx𝑐Cz
24 23 3expb CCatx𝑐Cyy𝑐Czx𝑐Cz
25 cicref CCatxBaseCx𝑐Cx
26 ciclcl CCatx𝑐CxxBaseC
27 25 26 impbida CCatxBaseCx𝑐Cx
28 21 22 24 27 iserd CCat𝑐CErBaseC