Metamath Proof Explorer


Theorem cicfval

Description: The set of isomorphic objects of the category c . (Contributed by AV, 4-Apr-2020)

Ref Expression
Assertion cicfval C Cat 𝑐 C = Iso C supp

Proof

Step Hyp Ref Expression
1 df-cic 𝑐 = c Cat Iso c supp
2 fveq2 c = C Iso c = Iso C
3 2 oveq1d c = C Iso c supp = Iso C supp
4 id C Cat C Cat
5 ovexd C Cat Iso C supp V
6 1 3 4 5 fvmptd3 C Cat 𝑐 C = Iso C supp