Database
BASIC CATEGORY THEORY
Categories
Isomorphic objects
cicfval
Next ⟩
brcic
Metamath Proof Explorer
Ascii
Unicode
Theorem
cicfval
Description:
The set of isomorphic objects of the category
c
.
(Contributed by
AV
, 4-Apr-2020)
Ref
Expression
Assertion
cicfval
⊢
C
∈
Cat
→
≃
𝑐
⁡
C
=
Iso
⁡
C
supp
∅
Proof
Step
Hyp
Ref
Expression
1
df-cic
⊢
≃
𝑐
=
c
∈
Cat
⟼
Iso
⁡
c
supp
∅
2
fveq2
⊢
c
=
C
→
Iso
⁡
c
=
Iso
⁡
C
3
2
oveq1d
⊢
c
=
C
→
Iso
⁡
c
supp
∅
=
Iso
⁡
C
supp
∅
4
id
⊢
C
∈
Cat
→
C
∈
Cat
5
ovexd
⊢
C
∈
Cat
→
Iso
⁡
C
supp
∅
∈
V
6
1
3
4
5
fvmptd3
⊢
C
∈
Cat
→
≃
𝑐
⁡
C
=
Iso
⁡
C
supp
∅