Database
BASIC CATEGORY THEORY
Categories
Isomorphic objects
cicrcl
Next ⟩
cicsym
Metamath Proof Explorer
Ascii
Unicode
Theorem
cicrcl
Description:
Isomorphism implies the right side is an object.
(Contributed by
AV
, 5-Apr-2020)
Ref
Expression
Assertion
cicrcl
⊢
C
∈
Cat
∧
R
≃
𝑐
⁡
C
S
→
S
∈
Base
C
Proof
Step
Hyp
Ref
Expression
1
cicfval
⊢
C
∈
Cat
→
≃
𝑐
⁡
C
=
Iso
⁡
C
supp
∅
2
1
breqd
⊢
C
∈
Cat
→
R
≃
𝑐
⁡
C
S
↔
R
supp
∅
⁡
Iso
⁡
C
S
3
isofn
⊢
C
∈
Cat
→
Iso
⁡
C
Fn
Base
C
×
Base
C
4
fvexd
⊢
C
∈
Cat
→
Iso
⁡
C
∈
V
5
0ex
⊢
∅
∈
V
6
5
a1i
⊢
C
∈
Cat
→
∅
∈
V
7
df-br
⊢
R
supp
∅
⁡
Iso
⁡
C
S
↔
R
S
∈
supp
∅
⁡
Iso
⁡
C
8
elsuppfng
⊢
Iso
⁡
C
Fn
Base
C
×
Base
C
∧
Iso
⁡
C
∈
V
∧
∅
∈
V
→
R
S
∈
supp
∅
⁡
Iso
⁡
C
↔
R
S
∈
Base
C
×
Base
C
∧
Iso
⁡
C
⁡
R
S
≠
∅
9
7
8
syl5bb
⊢
Iso
⁡
C
Fn
Base
C
×
Base
C
∧
Iso
⁡
C
∈
V
∧
∅
∈
V
→
R
supp
∅
⁡
Iso
⁡
C
S
↔
R
S
∈
Base
C
×
Base
C
∧
Iso
⁡
C
⁡
R
S
≠
∅
10
3
4
6
9
syl3anc
⊢
C
∈
Cat
→
R
supp
∅
⁡
Iso
⁡
C
S
↔
R
S
∈
Base
C
×
Base
C
∧
Iso
⁡
C
⁡
R
S
≠
∅
11
opelxp2
⊢
R
S
∈
Base
C
×
Base
C
→
S
∈
Base
C
12
11
adantr
⊢
R
S
∈
Base
C
×
Base
C
∧
Iso
⁡
C
⁡
R
S
≠
∅
→
S
∈
Base
C
13
10
12
syl6bi
⊢
C
∈
Cat
→
R
supp
∅
⁡
Iso
⁡
C
S
→
S
∈
Base
C
14
2
13
sylbid
⊢
C
∈
Cat
→
R
≃
𝑐
⁡
C
S
→
S
∈
Base
C
15
14
imp
⊢
C
∈
Cat
∧
R
≃
𝑐
⁡
C
S
→
S
∈
Base
C