Metamath Proof Explorer


Theorem cicrcl

Description: Isomorphism implies the right side is an object. (Contributed by AV, 5-Apr-2020)

Ref Expression
Assertion cicrcl C Cat R 𝑐 C S S Base C

Proof

Step Hyp Ref Expression
1 cicfval C Cat 𝑐 C = Iso C supp
2 1 breqd C Cat R 𝑐 C S R supp Iso C S
3 isofn C Cat Iso C Fn Base C × Base C
4 fvexd C Cat Iso C V
5 0ex V
6 5 a1i C Cat V
7 df-br R supp Iso C S R S supp Iso C
8 elsuppfng Iso C Fn Base C × Base C Iso C V V R S supp Iso C R S Base C × Base C Iso C R S
9 7 8 syl5bb Iso C Fn Base C × Base C Iso C V V R supp Iso C S R S Base C × Base C Iso C R S
10 3 4 6 9 syl3anc C Cat R supp Iso C S R S Base C × Base C Iso C R S
11 opelxp2 R S Base C × Base C S Base C
12 11 adantr R S Base C × Base C Iso C R S S Base C
13 10 12 syl6bi C Cat R supp Iso C S S Base C
14 2 13 sylbid C Cat R 𝑐 C S S Base C
15 14 imp C Cat R 𝑐 C S S Base C